二、预检索优化
索引优化技术通过以更有条理、更易于搜索的方式构建外部数据来提高检索准确性。这些技术可应用于 RAG 流水线中的数据预处理和分块阶段,确保有效检索相关信息。
1、查询转换(Query Transformation)
直接使用用户查询作为搜索查询进行检索会导致搜索结果不佳。这就是为什么将原始用户查询转换为优化的搜索查询至关重要。查询转换可以细化和扩展不清楚、复杂或模棱两可的用户查询,以提高搜索结果的质量。
查询重写(Query Rewriting)涉及重新制定原始用户查询,使其更适合检索。这在用户查询措辞不当或表达方式不同的情况下特别有用。这可以通过使用 LLM 重新措辞原始用户查询或采用专门为此任务训练的专门的小型语言模型来实现。
这种方法称为“重写-检索-阅读”(Rewrite-Retrieve-Read),而不是传统的“检索后阅读”(Retrieve-then-Read)范式。
查询扩展(Query Expansion)侧重于扩大原始查询的范围以捕获更多相关信息。这涉及使用 LLM 根据用户的初始输入生成多个类似查询。然后,这些扩展的查询将用于检索过程,从而增加检索到的文档的数量和相关性。
注意:由于检索到的文档数量增加,通常需要执行重新排序步骤以优先考虑最相关的结果(会在后面的重新排序部分介绍)。
2、查询分解(Query Decomposition)
查询分解是一种将复杂查询分解为更简单的子查询的技术。这对于回答需要多种信息源的多方面问题非常有用,从而获得更精确、更相关的搜索结果。
该过程通常涉及两个主要阶段:使用 LLM 将原始查询分解为更小、更集中的子查询,然后处理这些子查询以检索相关信息。
例如,复杂查询“为什么我吃得健康,但总是这么累?我应该改变饮食习惯还是尝试一些饮食趋势?”可以分解为以下三个更简单的子查询:
- 哪些常见的饮食因素会导致疲劳?
- 哪些流行的饮食趋势及其对能量水平的影响?
- 如何确定我的饮食是否均衡并支持我的能量需求?
每个子查询都针对特定方面,使检索器能够找到相关文档或块。子查询也可以并行处理以提高效率。关键词提取和元数据过滤器提取等附加技术可以帮助识别关键搜索词和结构化过滤条件,从而实现更精确的搜索。检索后,系统会汇总和综合所有子查询的结果,以生成对原始复杂查询的全面答案。
3、查询路由(Query Routing)
查询路由是一种根据查询的内容和意图将查询定向到特定流水线的技术,使 RAG 系统能够有效地处理各种场景。它通过分析每个查询并选择最佳检索方法或处理流水线来提供准确的响应。这通常需要实施多索引策略,将不同类型的信息组织成单独的、经过优化的专门索引。
该过程可以包括 Agentic 元素,其中 AI Agent 决定如何处理每个查询。这些 Agent 评估查询复杂性和领域等因素以确定最佳方法。例如,基于事实的问题可能会被路由到一个流水线,而需要总结或解释的问题则会被发送到另一个流水线。
Agentic RAG 的功能类似于一个专门 Agent 网络,每个 Agent 都具有不同的专业知识。它可以从各种数据存储、检索策略(基于关键字、语义或混合)、查询转换(针对结构不良的查询)和专门工具或 API(例如文本到 SQL 转换器甚至 Web 搜索功能)中进行选择。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】