建议收藏!大模型分类困难的原因及三大应用场景详解

文章分析了大模型分类困难的四大根源:技术融合、命名混乱、动态进化和评估标准缺失,并指出应从实际任务出发而非依赖理论分类。同时,文章详细介绍了大模型的三大应用方向:AIGC内容生成、RAG知识增强和智能体技术。最后强调学习大模型的最佳方法是多用、多尝试、多研究,以应对技术的快速迭代,提高工作效率。

大模型由于其快速迭代的原因,因此大模型分类存在很多困难;而作为大模型应用的使用者和开发者我们需要做的就是不断去尝试和体验模型的功能。

大模型技术发展到今天,其功能可以说是日新月异;并且很多企业已经在探索大模型的应用场景和技术实现;但是很多人到现在对大模型的了解仅仅只限于能聊个天,问个问题。

但实际上,大模型能够做的事要远比我们想象中的要多的多;因此,今天我们就从用户和技术两个角度来介绍一下大模型的应用。

在这里插入图片描述

关于大模型的分类和应用问题

如果想弄清楚大模型是怎么使用的,首先要知道大模型的分类;不同类型的模型适合不同的应用场景,其功能和实现也各不相同。

而关于大模型的分类问题其实是一个复杂的问题,大模型的分类有多个维度,比如从任务类型有分类模型,翻译模型,摘要模型和文本生成等。

但从与具体的技术场景结合来看,又有NLP任务,CV任务等;而从功能来看又有生成式模型和推理模型;从垂直角度看,有处理图片的模型,有写代码的模型;如果从纯粹的技术角度来看,又有Transformer模型,Gan网络等。

在这里插入图片描述

而在实际的模型设计和开发过程中,很多模型采用的又是混合架构;比如说一个模型既有生成能力,又有推理能力,而能够生成多种模态数据的模型被称为多模态。

再加上大模型技术日新月异的迭代速度,因此很多人很难分清哪个模型是干啥的,有哪些功能;因此在选择模型时,最好就是根据自己的任务需求去搜索相关的模型,最后再根据模型的官方介绍,然后再应用到具体的业务场景中。

大模型分类困难的四大根源

  1. 技术融合

  • 现代大模型(如GPT-4、Claude 3)已发展为「通用计算平台」,同时具备:
  • 生成能力(文本/图像/代码)
  • 推理能力(数学/逻辑)
  • 判别能力(分类/检测)
  • 多模态理解(文本+图像+音频)

2. 命名混乱

  1. 商业命名(如"文心一言")不反映技术架构
  2. 同一架构不同规模(LLaMA-2-7B/13B/70B)能力差异巨大

3. 动态进化

  1. 插件系统的引入(如ChatGPT的Browsing/Code Interpreter)使单模型能力边界模糊

4. 评估标准缺失

  1. 缺乏统一的「能力维度评估体系」,不同厂商宣传指标不可比

理解大模型分类的本质是:放弃绝对分类,建立多维评估体系。建议从实际任务出发进行验证,而非过度依赖理论分类。

前面简单了解了一下大模型的分类问题,但仅仅知道大模型有哪些类型并没什么用,最重要的是用大模型解决我们的问题;以此来提高我们的工作和生活效率。

所以,学习大模型没有最好的办法,或者说办法只有一个;那就是多用,多尝试,多研究。

大模型应用

大模型其实从应用的角度来说,主要有三个方面:

第一就是利用大模型本身的能力,比如AIGC去做一些文本,视频,图片的生成能力;比如做自媒体,写文章,修图,剪辑视频等。

其次,就是RAG给大模型做知识增强,因为大模型本身限制的原因;导致其在某些方面知识缺陷,因此就可以使用外部知识库的方式让大模型做知识增强。

最后,可以说是最有发展前景的方向就是——智能体;智能体就是给大模型装上手和脚,通过思维链,工作流,function call/MCP等技术;使得大模型具备独立思考和使用外部工具的能力。

在这里插入图片描述

当然,这三种方式大都是从技术角度来说的;但从用户角度来说,我们可以使用一些生成模型做一些简单的工作,如处理图片,写文档等。

而一些企业基于工作流平台开发智能体,比如coze平台;我们就可以根据自己的需要构建一个能够执行特定任务的智能体;以此来提高我们的工作效率。

总之,人工智能技术处于一个快速发展快速迭代的过程;很多新技术和名词每天都在涌现;因此,我们需要做的就是不断跟进市场的脚步,多去尝试和试验;最终我们就会知道大模型能做什么,以及我们需要大模型给我们做什么。


我们如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值