“共轭”(conjugate)是什么意思?

共轭源于牲口拉车的器具,指的是通过连接件协同工作的概念。在不同科学领域如数学、物理和化学中,共轭表示对称性和关联性的特征,体现事物间的相互作用。英语中的conjugate源自拉丁语coniugare,意为“连接在一起”,强调共同协作。”

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"(è)"在汉语中原本是指牲口拉东西时架在脖子上的器具,呈“人”字状。古用“軶”,现用“轭”。

"共轭"原本就是指两个或多个这样的“器具”通过某种连接件将它们连接在一起,使其协同工作。比如,双马车就是通过一根本头连接两个“轭”,使之共同发力。如下图所示:

 

在英语中,“共轭”对应的单词是“conjugate”。“conjugate”这个词源自拉丁语“coniugare”,而“coniugare”这个由两部分词缀构成,即,“con-”(com-的消化吸收形式,词义为“with,together”(共用,一起))和“iugare”(词义为“to join”(连接)),合在一起,即“连接在一起的事物”。

“共轭”即通过某种东西连接在一起协同作用的事物,即其具有一定的对称性,又有一定的关联性,共同协作发生作用。因此,这个概念广泛用于数学、物理、化学、以及其它各种学科中。

 

 

### 30阶线性方程组的定义 一个30阶线性方程组是指由30个未知数和30个线性方程组成的代数方程组。其一般形式可以写成矩阵的形式 \( A \cdot X = B \),其中: - \( A \) 是一个 \( 30 \times 30 \) 的系数矩阵, - \( X \) 是包含30个未知数的列向量, - \( B \) 是已知的结果列向量。 如果 \( B \neq 0 \),则该方程组是非齐次线性方程组;如果 \( B = 0 \),则是齐次线性方程组[^2]。 --- ### 求解方法 #### 1. **直接法** 直接法通过精确计算得到线性方程组的解析解,适用于中小型规模的方程组(如30阶)。常用的方法包括但不限于以下几种: - **高斯消元法** 这是一种经典的数值算法,通过对增广矩阵进行初等行变换将其化为上三角形矩阵,从而逐步求得未知变量的值[^1]。 - **LU分解法** 将系数矩阵 \( A \) 分解为一个下三角矩阵 \( L \) 和一个上三角矩阵 \( U \),使得 \( A = LU \)。随后分别求解两个简单的三角形方程组来获得最终解。 - **MATLAB内置函数** MATLAB 提供了高效的矩阵运算工具,可以直接利用反斜杠操作符 (\) 来快速求解线性方程组 \( A \cdot X = B \)。 ```matlab % 使用MATLAB求解线性方程组 A = rand(30); % 随机生成30×30矩阵作为系数矩阵 B = ones(30, 1); % 定义右侧向量 X = A \ B; % 解方程AX=B disp(X); ``` --- #### 2. **迭代法** 对于大规模稀疏矩阵或者某些特殊结构的矩阵,直接法可能效率较低甚至不可行,此时可采用迭代法近似求解。常用的迭代方法如下: - **雅克比迭代法 (Jacobi Method)** 基于逐项更新的思想,在每次迭代过程中假设其他变量保持不变并依次修正当前变量的估计值。 - **高斯-赛德尔迭代法 (Gauss-Seidel Method)** 类似于雅克比迭代法,但在每一步中立即使用最新可用的信息而不是等待整个循环完成后再更新所有变量。 - **共轭梯度法 (Conjugate Gradient Method)** 特别适合解决正定对称系统的大型稀疏线性方程组问题,具有较快收敛速度和较少存储需求的特点。 以下是 Python 中基于 SciPy 库实现的一种简单迭代方式的例子: ```python from scipy.sparse.linalg import cg import numpy as np # 创建随机稀疏矩阵及其对应的右端项 np.random.seed(42) A_sparse = sparse.diags([1, -2, 1], [-1, 0, 1], shape=(30, 30)).toarray() + np.eye(30)*1e-5 b_vector = np.ones((30,)) solution, exit_code = cg(A_sparse, b_vector) print("Solution:", solution) print("Exit Code:", exit_code) ``` --- ### 总结 无论是直接法还是迭代法都有各自适用场景以及优缺点。针对具体应用应综合考虑精度要求、计算资源限制等因素选取合适的技术手段来进行实际求解过程中的优化设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值