一、torch.mul
该乘法可简单理解为矩阵各位相乘,一个常见的例子为向量点乘,源码定义为torch.mul(input,other,out=None)。其中other可以为一个数也可以为一个张量,other为数即张量的数乘。
该函数可触发广播机制(broadcast)。只要mat1与other满足broadcast条件,就可可以进行逐元素相乘 。
tensor1 = 2*torch.ones(1,4)
tensor2 = 3*torch.ones(4,1)
print(torch.mul(tensor1, tensor2))
#输出结果为:
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
# 生成指定张量
c = torch.Tensor([[1, 2, 3], [4, 5 ,6]])
print(c.shape) # 2*3
print(c)
# 生成随机张量
d = torch.randn(2,2,3)
print(d)
print(d.shape) # 2*2*3
mul = torch.mul(c, d) # c会自动broadcast和d进行匹配
print(mul.shape) # 2*2*3
print(mul)
二、torch.mm
该函数一般只能用来计算两个二维矩阵的矩阵乘法,而且不支持broadcast操作。该函数源码定义为torch.mm(input,mat2,out=None) ,参数与返回值均为tensor形式。
a=torch.ones(4,3)
b=2*torch.ones(3,2)
c=torch.empty(4,2)
torch.mm(a,b,out=c)
print(torch.mm(a,b))
print( c )
#输出结果为
tensor([[6., 6.],
[6., 6.],
[6., 6.],
[6., 6.]])
tensor([[6., 6.],
[6., 6.],
[6., 6.],
[6., 6.]])
三、torch.matmul
这个矩阵乘法是在torch.mm的基础上增加了广播机制,源码定义为torch.matmul(input,other,out=None)。
其基本运算规则如下:
如果两个参数都为一维,则等价于torch.mul,需要注意的是:此时的out不接受任何参数
如果两个张量都为二维且符合矩阵相乘规则,或第一个参数为一维(长度为m,这里等价为大小为1* m),第二个参数为二维(大小为m* n)则运算等价于torch.mm
如果第一个参数为二维(大小m* n),第二个参数为一维(长度为n),这里第二个参数会进行转置成为n* 1的列向量,随后进行矩阵相乘,将得到的结果再进行转置,最终返回一个大小为1* m的向量
tensor1 = torch.tensor([[1,1,1,1],[2,2,2,2],[3,3,3,3]],dtype=torch.float32)
tensor2 = torch.ones(4)
print(tensor1.size())
print(tensor2.size())
print(torch.matmul(tensor1, tensor2).shape)
#输出结果为:
torch.Size([3, 4])
torch.Size([4])
torch.Size([3])
还有一种情况就是任意一个参数至少为3维, 当前面的维度相同且最后两个维度符合二维矩阵运算规则可进行计算,例如第一参数的大小为a* b * c * m,第二个参数的大小为a* b* m* d,则返回一个大小为a* b* c * d的张量,可触发广播机制。
tensor1 = torch.ones(1,4,3,2)
tensor2 = torch.ones(2,6)
print(torch.matmul(tensor1, tensor2).size())
#输出结果为:
torch.Size([1, 4, 3, 6])
四、三维带Batch矩阵乘法 torch.bmm()
torch.bmm(bmat1,bmat2), 其中bmat1(B×n×m),bmat2(B×m×d)输出out的维度是B×n×d,该函数两个输入必须三维矩阵中的第一维要要相同,不支持broadCast操作。
五、torch中tensor数组的广播计算
首先定义两个张量,x的形状是[1,2,1],y的形状是[1,2,2]。
当x与y相乘时,由于x.size(2)不等于y.size(2),x会被扩展为[1,2,2]形状,然后再与张量y进行乘法运算。
x = torch.rand(1,2,1)
y = torch.rand(1,2,2)