基于Matlab的无人船局部避碰算法仿真平台

无人船动态自主避碰能够根据传感器数据,对周围环境中的突发或高速障碍物进行快速规避,以确保无人船在航行过程中的安全。常用的动态自主避碰算法有人工势场法、动态窗口法、速度障碍法、向量场直方图法等。现有的避碰算法还存在如下几个问题

(1)算法未结合国际海上避碰规则,导致避碰失败或二次事故。

(2)算法未考虑无人船的操纵特性,导致规划出的避碰路径难以运用于无人船的实际航行中。

(3)算法计算量大,无法实现高速无人船在复杂海况下的快速避碰。

如果都用实船验证算法费时费力,成本十分高昂。此外,无人船航行过程中环境局部障碍可能非常多变,搭建符合要求的局部障碍也很复杂。因此,考虑采用Matlab搭建无人船局部避碰算法仿真平台。

一、界面

在Matlab环境下打开主程序,点击运行按钮

即会弹出如下窗口

窗口可对运行算法进行设置,包括“算法选择”、“步长设置”,确认后,点击“开始航行”即可进入避碰算法仿真运行环境。“算法选择”包括如下内容:

详细资料

### 无人船算法及其MATLAB实现 #### 1. 需求背景 由于实际环境中存在大量不确定因素,如复杂的海洋环境和多变的局部障碍物,直接利用实船验证算法不仅耗时费力而且成本高昂。因此,选择使用Matlab构建无人船局部算法仿真平台成为一种高效且经济的选择[^1]。 #### 2. 基于人工势场法的船舶自动系统概述 该技术通过引入虚拟吸引力与排斥力的概念,在保持原有航线的同时开潜在威胁物体。具体来说,当检测到前方有障碍物时,会计算出相应的斥力作用方向并调整航向以绕过这些障碍物;而到达目的地附近则会产生引力引导船只继续前进直至抵达终点[^3]。 #### 3. 关键组件设计 - **本船模型**:建立精确描述无人船运动特性的动力学方程组; - **障碍物表示**:采用圆形区域近似表达固定或移动型态各异的目标实体; - **风险评估机制**:运用DCPA(最接近点距离)及TCPA(最近相遇时间)两个参数作为衡量标准来判定是否存在撞可能性,并据此采取相应措施; - **决策逻辑框架**:综合考量多种因素后决定最优路径规划方案以及何时恢复正常行驶模式[^5]。 #### 4. MATLAB代码实例展示 下面给出一段简化版的人工势场法应用于单个静止障碍物场景下的MATLAB程序: ```matlab function main() % 初始化设置 boat_pos = [0, 0]; % 船只初始位置 (x,y) goal_pos = [10, 10]; % 终点坐标 obstacle_center = [7, 3]; % 障碍物中心点 r_obstacle = 1; % 半径大小 step_size = 0.1; max_iter = 1e3; figure(); hold on; plot(goal_pos(1),goal_pos(2),'ro','MarkerSize',8,'LineWidth',2);%绘制目标点 rectangle('Position',[obstacle_center-r_obstacle,r_obstacle*2,r_obstacle*2],'Curvature',[1,1]);%绘制障碍物 for iter=1:max_iter F_att = attractive_force(boat_pos, goal_pos); F_rep = repulsive_force(boat_pos, obstacle_center, r_obstacle); total_force = F_att + F_rep; new_boat_pos = boat_pos + total_force * step_size; scatter(new_boat_pos(1),new_boat_pos(2));drawnow;%实时显示轨迹 if norm(total_force)<1e-6 || isinside(new_boat_pos,obstacle_center,r_obstacle)||norm(new_boat_pos-goal_pos)<r_obstacle break; end boat_pos=new_boat_pos; end end function f = attractive_force(p_current,p_goal) k_att = 1.0; delta_p=p_goal-p_current; f=k_att*(delta_p)/sqrt(sum(delta_p.^2)); end function f = repulsive_force(p_current,c_obstacle,r_obstacle) k_rep = 10.0; d_min = sqrt(sum((p_current-c_obstacle).^2))-r_obstacle; if d_min<=0 f=-k_rep*((1/d_min-1/r_obstacle)^2)*(c_obstacle-p_current)/(d_min^3); else f=zeros(size(c_obstacle)); end end function flag=isinside(point,center,radius) distance=sqrt(sum((point-center).^2)); flag=(distance<radius); end ``` 此段脚本实现了基本的功能演示,包括但不限于吸引/排斥力量计算、迭代更新当前位置直到满足终止条件为止等功能模块。值得注意的是,上述例子仅适用于简单情况下的单一静态障碍规操作,对于更复杂的真实世界应用场景,则需进一步扩展和完善现有架构。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cretheego

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值