I. 前言
系列文章:
- 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
- PyTorch搭建LSTM实现时间序列预测(负荷预测)
- PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
- PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
- PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
- PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
- PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
- PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
- PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
- PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
- PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
- PyTorch-LSTM时间序列预测中如何预测真正的未来值
- PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
- PyTorch搭建ANN实现时间序列预测(风速预测)
- PyTorch搭建CNN实现时间序列预测(风速预测)
- PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
- PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
- PyTorch时间序列预测系列文章总结(代码使用方法)
- TensorFlow搭建LSTM实现时间序列预测(负荷预测)
- TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
- TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
- TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
- TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
- TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
- TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
- TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
- TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
- TensorFlow搭建ANN实现时间序列预测(风速预测)
- TensorFlow搭建CNN实现时间序列预测(风速预测)
- TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
- PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
- PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
- PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
- 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
- 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
- (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
- PyTorch搭建Informer实现长序列时间序列预测
- PyTorch搭建Autoformer实现长序列时间序列预测
- PyTorch搭建GNN(GCN、GraphSAGE和GAT)实现多节点、单节点内多变量输入多变量输出时空预测
II. seq2seq
seq2seq由两部分组成:Encoder和Decoder。seq2seq的输入是一个序列,输出也是一个序列,经常用于时间序列预测。关于seq2seq的具体原理可以参考:DL入门(3):循环神经网络(RNN)。
III. 代码实现
3.1 数据处理
我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来12个时刻的负荷(步长pred_step_size可调)。
数据处理代码和前面的直接多输出预测一致。
3.2 模型搭建
模型搭建分为三个步骤:编码器、解码器以及seq2seq。
首先是Encoder:
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_directions = 1
self.batch_size = batch_size
self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=False)
def forward(self, input_seq):
batch_size, seq_len = input_seq.shape[0], input_seq.shape[1]
h_0 = torch.randn(self.num_directions * self.num_layers, batch_size, self.hidden_size).to(device)
c_0 = torch.randn(self.num_directions * self.num_layers, batch_size, self.hidden_size).to(device)
output, (h, c) = self.lstm(input_seq, (h_0, c_0))
return h, c
一般来讲编码器采用的就是RNN网络,这里采用了LSTM将原始数据进行编码,然后将LSTM的最后的隐状态和单元状态返回。
接着是解码器Decoder:
class Decoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.num_directions = 1
self.batch_size = batch_size
self.lstm = nn.LSTM(input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=False)
self.linear = nn.Linear(self.hidden_size, self.input_size)
def forward(self, input_seq, h, c):
# input_seq(batch_size, input_size)
input_seq = input_seq.unsqueeze(1)
output, (h, c) = self.lstm(input_seq, (h, c))
# output(batch_size, seq_len, num * hidden_size)
pred = self.linear(output.squeeze(1)) # pred(batch_size, 1, output_size)
return pred, h, c
解码器同样也由LSTM组成,不过解码器的初始的隐状态和单元状态是编码器的输出。此外,解码器每次输入都是上次的输出。
最后定义seq2seq:
class Seq2Seq(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.Encoder = Encoder(input_size, hidden_size, num_layers, batch_size)
self.Decoder = Decoder(input_size, hidden_size, num_layers, output_size, batch_size)
def forward(self, input_seq):
target_len = self.output_size # 预测步长
batch_size, seq_len, _ = input_seq.shape[0], input_seq.shape[1], input_seq.shape[2]
h, c = self.Encoder(input_seq)
outputs = torch.zeros(batch_size, self.input_size, self.output_size).to(device)
decoder_input = input_seq[:, -1, :]
for t in range(target_len):
decoder_output, h, c = self.Decoder(decoder_input, h, c)
outputs[:, :, t] = decoder_output
decoder_input = decoder_output
return outputs[:, 0, :]
seq2seq的整体结构如下:
seq2seq中,target_len=output_size
,即预测步长。首先,我们利用输入得到图中的编码c(h and c)
:
h, c = self.Encoder(input_seq)
接着,解码器的第一个输入为最后一个时间步的输出:
decoder_input = input_seq[:, -1, :]
然后开始循环:
decoder_output, h, c = self.Decoder(decoder_input, h, c)
outputs[:, :, t] = decoder_output
decoder_input = decoder_output
需要注意的是,为了输入输出匹配,这里decoder_output
包含了所有变量未来一个步长的预测值,最后我们只需要取第一个也就是负荷的预测值即可:
return outputs[:, 0, :]
3.3 模型训练/测试
模型训练和测试同前文一致。
3.4 实验结果
前24个预测未来12个,每个模型训练50轮,MAPE为9.09%,还需要进一步完善。
IV. 源码及数据
后面将陆续公开~