TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)

I. 前言

前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

II. 原理

如果想利用TensorFlow来实现双向LSTM,则需要用到tf.keras.layers.Bidirectional,关于Bidirectional,官方API描述如下:

tf.keras.layers.Bidirectional(
    layer, merge_mode='concat', weights=None, backward_layer=None,
    **kwargs
)

在这里插入图片描述
其中:

  1. layer:可以为LSTM或者GRU。
  2. merge_mode:如PyTorch搭建双向LSTM实现时间序列预测(负荷预测)中描述,双向LSTM最终会得到两个方向上的输出,输出维度为(batch_size, seq_len, 2 * hidden_size),我们可以对两个方向上的输出按照多种方式进行组合,但PyTorch需要手动拆分然后实现组合。在TensorFlow中,我们可以通过Bidirectionalmerge_model参数定义组合方式,具体有(sum, mul, concat, ave, None)五种方式,默认为concat,也就是将两个输出拼接在一起。如果为None,则不进行组合,而是将两个方向上的输出以列表形式返回,这样可以让使用者自定义其他组合方式。
  3. backward_layer:用于处理向后输入处理的实例。如果未提供,则作为参数传递的图层实例将用于自动生成后向图层。

III. 模型定义

双向LSTM定义如下:

class BiLSTM(keras.Model):
    def __init__(self, args):
        super(BiLSTM, self).__init__()
        self.lstm = Sequential()
        for i in range(args.num_layers):
            self.lstm.add(
                Bidirectional(layers.LSTM(units=args.hidden_size, input_shape=(args.seq_len, args.input_size),
                                          activation='tanh', return_sequences=True)))
        self.fc1 = layers.Dense(64, activation='relu')
        self.fc2 = layers.Dense(args.output_size)

    def call(self, data, training=None, mask=None):
        x = self.lstm(data)
        x = self.fc1(x)
        x = self.fc2(x)

        return x[:, -1:, :]

双向LSTM定义语句:

Bidirectional(layers.LSTM(units=args.hidden_size, input_shape=(args.seq_len, args.input_size),
                          activation='tanh', return_sequences=True)))

这里我没有指定merge_mode参数,所以默认为concat,也就是(batch_size, seq_len, 2 * hidden_size)

IV. 训练和预测

数据处理、训练以及预测同前面几篇文章。

这里对单变量单步长的预测进行对比,在其他条件保持一致的情况下,得到的实验结果如下所示:

方法LSTMBiLSTM(concat)BiLSTM(ave)
MAPE5.065.325.11

可以看到,对于本文所使用的负荷数据,单向和双向模型的效果差异不大。

V. 源码及数据

后面将陆续公开~

  • 3
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
对于季节性时间序列预测,可以通过引入季节性因素来改进模型,具体步骤如下: 1. 数据准备:将时间序列数据划分为训练集和测试集,通常是按照时间顺序划分。同时,需要对数据进行标准化处理,可以使用z-score标准化或min-max标准化等方法。此外,需要将时间序列数据转换为季节性数据,可以使用差分或分解方法来实现。 2. 构建模型:使用TensorFlow构建双向LSTM模型。可以使用tf.keras.Sequential()来构建模型,双向LSTM可以通过使用tf.keras.layers.Bidirectional()来实现。需要将季节性因素作为输入特征一起输入到模型中,可以使用tf.keras.layers.Concatenate()将时间序列数据和季节性因素拼接起来。 3. 训练模型:使用训练集对模型进行训练。可以选择不同的优化器和损失函数,如Adam优化器和均方误差损失函数。 4. 预测结果:使用测试集数据对模型进行预测,并计算预测结果与真实结果之间的误差,如均方根误差(RMSE)。 5. 调参优化:可以通过调整模型的超参数来优化模型性能,如调整LSTM的层数、神经元个数、dropout比率等。 参考代码如下: ```python import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Bidirectional, Concatenate from sklearn.preprocessing import MinMaxScaler # 数据准备 data = # 读取时间序列数据 seasonal_factor = # 读取季节性因素数据 train_size = int(len(data) * 0.8) train_data = data[:train_size] train_seasonal = seasonal_factor[:train_size] test_data = data[train_size:] test_seasonal = seasonal_factor[train_size:] scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建模型 model = Sequential() model.add(Bidirectional(LSTM(64, input_shape=(look_back, 2)))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') # 训练模型 look_back = 10 train_x, train_y = [], [] for i in range(look_back, len(train_data)): train_x.append([train_data[i-look_back:i, 0], train_seasonal[i-look_back:i]]) train_y.append(train_data[i, 0]) train_x, train_y = np.array(train_x), np.array(train_y) model.fit(train_x, train_y, epochs=100, batch_size=32) # 预测结果 test_x, test_y = [], [] for i in range(look_back, len(test_data)): test_x.append([test_data[i-look_back:i, 0], test_seasonal[i-look_back:i]]) test_y.append(test_data[i, 0]) test_x, test_y = np.array(test_x), np.array(test_y) test_predict = model.predict(test_x) test_predict = scaler.inverse_transform(test_predict) test_y = scaler.inverse_transform(test_y.reshape(-1, 1)) rmse = np.sqrt(np.mean(np.power((test_y - test_predict), 2))) print('RMSE:', rmse) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值