支持向量机SVM详解——SMO算法

本文详细探讨了支持向量机SVM中如何求解权重w和偏置b,通过最大化W(α)来寻找最优的α。SMO算法通过同时更新两个约束条件下的αi和αj来确保约束条件得以满足,从而达到最优解。α的取值范围限定在0到C之间,其上下界H和L的确定依赖于样本的类别信息y1和y2。根据不同类别组合,上下界的计算方法也有所不同。
摘要由CSDN通过智能技术生成

SVM如何求解w和b
在这里插入图片描述在这里插入图片描述使W(α)得到最大值的α,通过α求解w,b。在这里插入图片描述在这里插入图片描述
由于约束条件:
在这里插入图片描述如果只更改一个α,则没有办法保证约束条件成立,因此更新两个约束条件αiαj以保证约束条件成立,并且获得一个最优解。
在这里插入图片描述在这里插入图片描述有约束条件:α在0到C之间,H和L是α的上下界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值