深度学习中为什么仅对权重参数进行惩罚?


前言

今天看花书中关于参数范数惩罚的内容,了解到为什么仅对权重做正则化惩罚,觉得很有意义,所以这里记录下。


为什么仅对权重参数做正则惩罚?

神经网络中的参数包括两类,即权重参数和偏置参数。权重参数代表了两个变量间的关系,因此要通过多番考量才能给出准确的权重值。偏置参数仅与一个变量有关,因此不进行正则惩罚也不会造成大的方差,而且花书中提到,对偏置参数进行正则惩罚,容易造成欠拟合(这点不太理解,是因为仅与一个变量有关,所以调整后没法很好的拟合吗?)


总结

以前从来没有关注这些细节信息,今天看到花书中提到,才想到自己好像没有细细思量过为什么这么做,以后要在这方面提升自己了。上面内容仅是个人理解,如果有误,请大家自行阅读花书中相关内容,谢谢大家!


参考

  1. 《Deep Learning - 深度学习》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值