前言
今天看花书中关于参数范数惩罚的内容,了解到为什么仅对权重做正则化惩罚,觉得很有意义,所以这里记录下。
为什么仅对权重参数做正则惩罚?
神经网络中的参数包括两类,即权重参数和偏置参数。权重参数代表了两个变量间的关系,因此要通过多番考量才能给出准确的权重值。偏置参数仅与一个变量有关,因此不进行正则惩罚也不会造成大的方差,而且花书中提到,对偏置参数进行正则惩罚,容易造成欠拟合(这点不太理解,是因为仅与一个变量有关,所以调整后没法很好的拟合吗?)
总结
以前从来没有关注这些细节信息,今天看到花书中提到,才想到自己好像没有细细思量过为什么这么做,以后要在这方面提升自己了。上面内容仅是个人理解,如果有误,请大家自行阅读花书中相关内容,谢谢大家!
参考
- 《Deep Learning - 深度学习》