玉米田 组合数学 环涂色

玉米中学的社会实践活动中,学生们需要在编号连续的玉米田中种植不同种类的玉米,相邻田地不能种植相同品种。给定玉米田数量n和玉米种类k,题目要求计算种植方案总数对20011021取模的结果。解决方案涉及组合数学,可以使用特定公式计算:(k - 1) ^ n + (k - 1) * (-1) ^ n。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

玉米田
时间限制: 1 Sec 内存限制: 128 MB

题目描述
玉米中学的学生社会实践的内容是去玉米田中种玉米。

玉米中学有n块不同的玉米田,这些玉米田编号从1到n,且第i号玉米田与第i+1号玉米田相邻,特殊地,第n号玉米田与第1号玉米田相邻。

现在玉米中学购置了k种不同的玉米,为了美观,学校要求相邻的玉米田中不能种植同一种玉米,现在W某想要知道种植玉米的方案总数。

由于W某耐心有限,因此只需要你求出对20011021取模后的结果即可。
输入
一行两个整数n,k,表示玉米田的数量和玉米的种类数。
输出
一行一个整数,表示种植玉米的方案数对20011021取模后的结果。
样例输入 Copy
【样例1】
4 2
【样例2】
4 3
样例输出 Copy
【样例1】
2
【样例2】
18
提示
样例1解释
设2种玉米为a,b
2种种植玉米的方案为:abab,baba

所有数据满足:n,k≤109

设m个不同颜色涂给n个区域
直接套上公式 (m - 1) ^ n + (m - 1) * (-1) ^ n

大佬博客

#include<cstdio>
#include<iostream>
#include<string>
#
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值