微多普勒效应


一些参考资料

  • 《The Micro-Doppler Effect in Radar》
    从多普勒效应开始讲起,全书共六章:第一章详细介绍多普勒效应和微多普勒效应的相关内容,第二章介绍雷达中微多普勒效应应用基础,第三、四章分别介绍刚体、非刚体运动的微多普勒效应,第五章介绍微多普勒特征分析与解释,第六章总结与展望。
  • 《Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study》
    感觉像是《The Micro-Doppler Effect in Radar》的缩减版。
  • 《Advances in Applications of Radar Micro-Doppler Signatures》
    介绍微多普勒效应的多种应用场景。

1 微多普勒效应是什么

  三份参考文献里都有对微多普勒效应的定义及解释,将《Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study》摘要部分对微多普勒效应的解释摘录如下:

   When, in addition to the constant Doppler frequency shift induced by the bulk motion of a radar target, the target or any structure on the target undergoes micro-motion dynamics, such as mechanical vibrations or rotations, the micro-motion dynamics induce Doppler modulations on the returned signal, referred to as the micro-Doppler effect.

   译:当雷达目标、目标或目标上的任何结构引起的恒定多普勒频移除了发生机械振动或旋转等微运动动力学时,微运动动力学对返回信号产生多普勒调制,称为微多普勒效应。
 

2 微多普勒效应相关模型

2.1 刚体运动的微多普勒效应

  刚体是没有变形的固体的理想化。刚体的运动可以用运动学和动力学量来描述,如线速度与角速度等;其方向可以用三维欧几里得空间中的一组欧拉角、旋转矩阵等来表示。当刚体平移时,它的位置和方向都随时间而变化,物体中的所有粒子都以相同的平移速度移动。当刚体旋转时,物理上的所有粒子都会发生位置改变(除了位于旋转轴上的粒子),因此物体中任何两个粒子的线速度可能不相同,但角速度都是相同的。
  理论分析表明,物体的运动可以调制散射电磁波的相位函数。为了在电磁模拟中包含任何物体的运动,首先,必须通过使用运动微分方程和物体的旋转矩阵来确定物体的轨迹和方向;然后,利用准静态方法,将物体的运动视为在每个瞬间拍摄的一系列快照;最后,利用合适的RCS预测方法估计散射电磁场。

2.1.1 基本模型

远电磁场平移目标的几何形状  平移方程可写为
E T ⃗ ( r ′ ⃗ ) = e x p { j k r 0 ⃗ ⋅ ( u k ⃗ − u r ⃗ ) } E ⃗ ( r ⃗ ) \vec{E_T}(\vec{r^{'}}) = exp \{jk\vec{r_0}\cdot(\vec{u_k}-\vec{u_r})\}\vec{E}(\vec{r}) ET (r )=exp{jkr0 (uk ur )}E (r )
  其中, k = 2 π / λ k=2π/\lambda k=2π/λ是波数, u k ⃗ \vec{u_k} uk 是入射波的单位向量, u r ⃗ \vec{u_r} ur 是观测方向的单位向量, E ⃗ ( r ⃗ ) \vec{E}(\vec{r}) E (r )是目标移动前的远电场, r ⃗ = ( U 0 , V 0 , W 0 ) \vec{r}=(U_0,V_0,W_0) r =(U0,V0,W0)是目标在雷达坐标 ( U , V , W ) (U,V,W) (U,V,W)中的初始坐标, r ⃗ = ( U 1 , V 1 , W 1 ) \vec{r}=(U_1,V_1,W_1) r =(U1,V1,W1)是目标移动后的坐标,且 r ⃗ = r ′ ⃗ + r 0 ⃗ \vec{r}=\vec{r^{'}}+\vec{r_0} r =r +r0 ,其中 r 0 ⃗ \vec{r_0} r0 是移动向量。
   从平移方程可以看出,平移前后电场唯一的差异是相位因子 e x p { j k r 0 ⃗ ⋅ ( u k ⃗ − u r ⃗ ) } exp \{jk\vec{r_0}\cdot(\vec{u_k}-\vec{u_r})\} exp{jkr0 (uk ur )}。如果平移向量是时间的函数,即 r 0 ⃗ = r 0 ⃗ ( t ) = r 0 ( t ) u T ⃗ \vec{r_0}=\vec{r_0}(t)=r_0(t)\vec{u_T} r0 =r0 (t)=r0(t)uT ,其中 u T ⃗ \vec{u_T} uT 是平移的单位向量,那么相位因子就可表示为
e x p { j Φ ( t ) } = e x p { j k r 0 ( t ) u T ⃗ ⋅ ( u k ⃗ − u r ⃗ ) } exp\{j\Phi(t)\}=exp\{jkr_0(t)\vec{u_T}\cdot(\vec{u_k}-\vec{u_r})\} exp{jΦ(t)}=exp{jkr0(t)uT (uk ur )}
   对于后向散射,观测方向与入射波方向相反,即 u ⃗ k = − u ⃗ r \vec{u}_{k}=-\vec{u}_{r} u k=u r,那么
exp ⁡ { j Φ ( t ) } = exp ⁡ { j 2 k r 0 ( t ) u ⃗ T ⋅ u ⃗ k } \exp \{j \Phi(t)\}=\exp \left\{j 2 k r_{0}(t) \vec{u}_{T} \cdot \vec{u}_{k}\right\} exp{jΦ(t)}=exp{j2kr0(t)u Tu k}
如果平移方向垂直于入射波方向,且相位函数为零( e x p { Φ ( t ) } = 1 exp\{\Phi(t)\}=1 exp{Φ(t)}=1)。
   当雷达以载波频率 f f f发射电磁波时,雷达接收到的信号可以表示为
s ( t ) = exp ⁡ { j 2 k r 0 ( t ) u ⃗ T ⋅ u ⃗ k } exp ⁡ { − j 2 π f t } ∣ E ⃗ ( r ⃗ ) ∣ s(t)=\exp \left\{j 2 k r_{0}(t) \vec{u}_{T} \cdot \vec{u}_{k}\right\} \exp \{-j 2 \pi f t\}|\vec{E}(\vec{r})| s(t)=exp{j2kr0(t)u Tu k}exp{j2πft}E (r )
其中,相位因子 exp ⁡ { j 2 k r 0 ( t ) u ⃗ T ⋅ u ⃗ k } \exp \left\{j 2 k r_{0}(t) \vec{u}_{T} \cdot \vec{u}_{k}\right\} exp{j2kr0(t)u Tu k}定义了由运动 r ⃗ 0 ( t ) \vec{r}_{0}(t) r 0(t)引起的微多普勒效应的调制。如果运动是由 r 0 ( t ) = A cos ⁡ Ω t r_{0}(t)=A \cos \Omega t r0(t)=AcosΩt给出的振动,那么相位因子成为一个以 Ω \Omega Ω为角振动频率的时间周期函数:
exp ⁡ { j Φ ( t ) } = exp ⁡ { j 2 k A cos ⁡ Ω t u ⃗ T ⋅ u ⃗ k } \exp \{j \Phi(t)\}=\exp \left\{j 2 k A \cos \Omega t \vec{u}_{T} \cdot \vec{u}_{k}\right\} exp{jΦ(t)}=exp{j2kAcosΩtu Tu k}
   相位函数可以通过引入微运动来进行数学表示,以加强传统的多普勒分析。让我们将一个目标表示为一组点散射体,它们代表目标上的主要散射中心。为简单起见,假设所有的散射体都是反射被截获的所有能量的完美反射器。

2.1.2 平移+旋转

平移+旋转
   如上图所示,雷达静止,位于雷达坐标系 ( U 、 V 、 W ) (U、V、W) UVW的原点Q处。目标在其附加的局部坐标系 ( x 、 y 、 z ) (x、y、z) (xyz)中被描述,并相对于雷达坐标具有平移和旋转。为了观察目标的旋转,引入了参考坐标系 ( X 、 Y 、 Z ) (X、Y、Z) (XYZ),该系统与目标局部坐标具有相同的原点,因此与目标具有相同的平移,但相对于雷达坐标没有旋转。假设参考坐标的原点O在距离雷达的距离为 R 0 R_0 R0处。
   假定目标为以速度 V ⃗ \vec{V} V 平移、以角速度 ω ⃗ \vec{\omega} ω 旋转的刚体,可在目标局部坐标系里表示为 ω ⃗ = ( ω x , ω y , ω z ) T \vec{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{T} ω =(ωx,ωy,ωz)T,或者在参考坐标系中表示为 ω ⃗ = ( ω X , ω Y , ω Z ) T \vec{\omega}=\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right)^{T} ω =(ωX,ωY,ωZ)T
   图中的运动可以分解为两个步骤:1)以速度 V ⃗ \vec{V} V P P P平移到 P ′ ′ P^{''} P′′ O O ′ → = V ⃗ t \overrightarrow{O O^{\prime}}=\vec{V} t OO =V t;2)以角速度 ω ⃗ \vec{\omega} ω P ′ ′ P^{''} P′′旋转至 P ′ P^{'} P。如果从参考坐标系中观察运动,粒子 P P P位于 r ⃗ 0 = ( X 0 , Y 0 , Z 0 ) T \vec{r}_{0}=\left(X_{0}, Y_{0}, Z_{0}\right)^{T} r 0=(X0,Y0,Z0)T,从 P ′ ′ P^{''} P′′ P ′ P^{'} P的旋转通过旋转矩阵 ℜ t \Re_t t描述。在t时刻 P ′ P^{'} P的位置表示为
r ⃗ = O ′ P ′ → = ℜ t O ′ P ′ ′ → = ℜ t r ⃗ 0 \vec{r}=\overrightarrow{O^{\prime} P^{\prime}}=\Re_{t} \overrightarrow{O^{\prime} P^{\prime \prime}}=\Re_{t} \vec{r}_{0} r =OP =tOP′′ =tr 0
   而
Q P ′ → = Q O → + O O ′ → + O ′ P ′ → = R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 \overrightarrow{Q P^{\prime}}=\overrightarrow{Q O}+\overrightarrow{O O^{\prime}}+\overrightarrow{O^{\prime} P^{\prime}}=\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0} QP =QO +OO +OP =R 0+V t+tr 0
r ( t ) = ∥ R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 ∥ r(t)=\left\|\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0}\right\| r(t)= R 0+V t+tr 0
其中 ∥ ⋅ ∥ \left\|\cdot\right\| 为欧几里得范数。
  如果雷达传输载波为正弦波,从 P P P返回的基带信号为
s ( t ) = ρ ( x , y , z ) exp ⁡ { j 2 π f 2 r ( t ) c } = ρ ( x , y , z ) exp ⁡ { j Φ [ r ( t ) ] } \begin{aligned} s(t) &=\rho(x, y, z) \exp \left\{j 2 \pi f \frac{2 r(t)}{c}\right\} \\ &=\rho(x, y, z) \exp \{j \Phi[r(t)]\} \end{aligned} s(t)=ρ(x,y,z)exp{j2πfc2r(t)}=ρ(x,y,z)exp{jΦ[r(t)]}
其中, ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z)为局部坐标系中点散射体 P P P的反射率函数, c c c为电磁波传播速度,基带信号的相位为
Φ [ r ( t ) ] = 2 π f 2 r ( t ) c \Phi[r(t)]=2 \pi f \frac{2 r(t)}{c} Φ[r(t)]=2πfc2r(t)
  通过取相位的时间导数,得到了由目标运动引起的多普勒频移
f D = 1 2 π d Φ ( t ) d t = 2 f c d d t r ( t ) = 2 f c 1 2 r ( t ) d d t [ ( R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 ) T ( R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 ) ] = 2 f c [ V ⃗ + d d t ( ℜ t r ⃗ 0 ) ] T n ⃗ \begin{aligned} f_{D} &=\frac{1}{2 \pi} \frac{d \Phi(t)}{d t}=\frac{2 f}{c} \frac{d}{d t} r(t) \\ &=\frac{2 f}{c} \frac{1}{2 r(t)} \frac{d}{d t}\left[\left(\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0}\right)^{T}\left(\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0}\right)\right] \\ &=\frac{2 f}{c}\left[\vec{V}+\frac{d}{d t}\left(\Re_{t} \vec{r}_{0}\right)\right]^{T} \vec{n} \end{aligned} fD=2π1dtdΦ(t)=c2fdtdr(t)=c2f2r(t)1dtd[(R 0+V t+tr 0)T(R 0+V t+tr 0)]=c2f[V +dtd(tr 0)]Tn
其中, n ⃗ = ( R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 ) / ( ∥ R ⃗ 0 + V ⃗ t + ℜ t r ⃗ 0 ∥ ) \vec{n}=\left(\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0}\right) /\left(\left\|\vec{R}_{0}+\vec{V} t+\Re_{t} \vec{r}_{0}\right\|\right) n =(R 0+V t+tr 0)/( R 0+V t+tr 0 ) Q P ′ → \overrightarrow{Q P^{\prime}} QP 的单位向量。
在参考坐标系中,角旋转速度矢量: ω ⃗ = ( ω X , ω Y , ω Z ) T \vec{\omega}=\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right)^{T} ω =(ωX,ωY,ωZ)T,且目标以标量角速度 Ω = ∥ ω ⃗ ∥ \Omega=\|\vec{\omega}\| Ω=ω 沿单位矢量 ω ⃗ ′ = ω ⃗ / ∥ ω ⃗ ∥ \vec{\omega}^{\prime}=\vec{\omega} /\|\vec{\omega}\| ω =ω /∥ω 旋转。假设有一个较高的脉冲重复频率(PRF)和一个相对较低的角速度,可以认为在每个较小的时间间隔内的旋转运动是微小的,那么
ℜ t = exp ⁡ { ω ^ t } \Re_{t}=\exp \{\hat{\omega} t\} t=exp{ω^t}
其中, ω ^ \hat{\omega} ω^是与 ω ⃗ \vec{\omega} ω 相关的斜对称矩阵,因此,多普勒频移就改写为
f D = 2 f c [ V ⃗ + d d t ( e ω ^ t r ⃗ 0 ) ] T n ⃗ = 2 f c ( V ⃗ + ω ^ e ω ^ t r ⃗ 0 ) T n ⃗ = 2 f c ( V ⃗ + ω ^ r ⃗ ) T n ⃗ = 2 f c ( V ⃗ + ω ⃗ × r ⃗ ) T n ⃗ \begin{aligned} f_{D} &=\frac{2 f}{c}\left[\vec{V}+\frac{d}{d t}\left(e^{\hat{\omega} t} \vec{r}_{0}\right)\right]^{T} \vec{n}=\frac{2 f}{c}\left(\vec{V}+\hat{\omega} e^{\hat{\omega} t} \vec{r}_{0}\right)^{T} \vec{n} \\ &=\frac{2 f}{c}(\vec{V}+\hat{\omega} \vec{r})^{T} \vec{n}=\frac{2 f}{c}(\vec{V}+\vec{\omega} \times \vec{r})^{T} \vec{n} \end{aligned} fD=c2f[V +dtd(eω^tr 0)]Tn =c2f(V +ω^eω^tr 0)Tn =c2f(V +ω^r )Tn =c2f(V +ω ×r )Tn
如果 ∥ R ⃗ 0 ∥ ≫ ∥ V ⃗ t + ℜ t r ⃗ ∥ \left\|\vec{R}_{0}\right\| \gg\left\|\vec{V} t+\Re_{t} \vec{r}\right\| R 0 V t+tr n ⃗ \vec{n} n 可以近似为 n ⃗ = R ⃗ 0 / ∥ R ⃗ 0 ∥ \vec{n}=\vec{R}_{0} /\left\|\vec{R}_{0}\right\| n =R 0/ R 0 ,这是雷达LOS的方向。因此,多普勒频移近似为
f D = 2 f c [ V ⃗ + ω ⃗ × r ⃗ ] radial  f_{D}=\frac{2 f}{c}[\vec{V}+\vec{\omega} \times \vec{r}]_{\text {radial }} fD=c2f[V +ω ×r ]radial 
式中,第一项是平移引起的多普勒频移,第二项是旋转引起的微多普勒:
f micro-Doppler  = 2 f c [ ω ⃗ × r ⃗ ] radial  f_{\text {micro-Doppler }}=\frac{2 f}{c}[\vec{\omega} \times \vec{r}]_{\text {radial }} fmicro-Doppler =c2f[ω ×r ]radial 
 

3 微多普勒效应的应用

3.1 地面移动物体检测

人体步态

3.2 导弹诱饵识别

诱饵识别
  弹道导弹的总体飞行轨迹可分为三个阶段。在第一阶段,弹头和弹体没有分离,各种诱饵也没有释放。在第二阶段,轻饵和碎屑的运动是不规则的,没有稳定的微运动。重饵在翻滚或摆动。真实弹头与弹体分离后,弹头会旋转以稳定姿态和轨道,但在释放诱饵和其他穿透物体后,弹头会因释放干扰而出现一定的进动和章动现象。进入最后阶段后,真正的弹头仍将旋转、进动和章动,而重型诱饵将继续摇摆和滚动。

  弹道导弹弹头的进动和章动以及诱饵的摇摆运动是两种典型的微动。第一幅图是进动产生的微多普勒的理论值。第二个是章动产生的微多普勒的理论值。

3.3 人体微动检测

  活体存在呼吸和心跳。在研究人类反射的雷达信号时,雷达观测到了由心跳、呼吸引起的胸部运动,甚至喉部振动引起的特定微多普勒调制。

  还有一些其他的应用,不补充了…


附 推导 u ⃗ × r ⃗ = u ^ r ⃗ \vec{u} \times \vec{r}=\hat{u} \vec{r} u ×r =u^r

  给定一个向量 u ⃗ = [ u x , u y , u z ] T \vec{u}=\left[u_{x}, u_{y}, u_{z}\right]^{T} u =[ux,uy,uz]T,定义一个斜矩阵
u ^ = [ 0 − u z u y u z 0 − u x − u y u x 0 ] \hat{u}=\left[\begin{array}{ccc} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{array}\right] u^= 0uzuyuz0uxuyux0
  向量 u ⃗ \vec{u} u 和任意向量 r ⃗ \vec{r} r 的交叉积可以通过矩阵计算求解
u ⃗ × r ⃗ = [ u y r z − u z r y u z r x − u x r z u x r y − u y r x ] = [ 0 − u z u y u z 0 − u x − u y u x 0 ] [ r x r y r z ] = u ^ r ⃗ \vec{u} \times \vec{r}=\left[\begin{array}{c} u_{y} r_{z}-u_{z} r_{y} \\ u_{z} r_{x}-u_{x} r_{z} \\ u_{x} r_{y}-u_{y} r_{x} \end{array}\right]=\left[\begin{array}{ccc} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{array}\right]\left[\begin{array}{c} r_{x} \\ r_{y} \\ r_{z} \end{array}\right]=\hat{u} \vec{r} u ×r = uyrzuzryuzrxuxrzuxryuyrx = 0uzuyuz0uxuyux0 rxryrz =u^r
  这种关系在分析特殊的正交矩阵群或SO(3)旋转群时很有用,也称为三维旋转矩阵。

雷达是一种用于测量目标位置和速度的设备,它通过发射和接收无线电波来实现。雷达多普勒效应是指当目标物体相对于雷达设备运动时,其回波频率会发生改变的现象。 雷达多普勒效应的原理是基于多普勒效应的应用。当目标物运动时,它会引起接收到的回波频率发生变化。如果目标物朝着雷达设备运动,回波频率会比发射频率高,而如果目标物远离雷达设备,则回波频率会比发射频率低。通过测量这种频率变化,我们可以推断出目标物体的速度和运动方向。 Python是一种广泛应用于科学计算和数据分析的编程语言,也可以用于雷达信号处理。在Python中,我们可以使用各种库和工具来处理雷达数据和实现雷达多普勒效应的计算。 例如,使用Python的SciPy库,我们可以通过进行傅里叶变换来分析雷达回波信号的频谱。通过对频谱进行分析,我们可以提取目标物体的回波频率,并根据频率变化来计算目标物体的速度。 此外,Python中还有其他库和工具,如NumPy和Matplotlib,可以帮助我们对雷达数据进行处理、可视化和分析。 总之,雷达多普勒效应是一种利用频率变化来测量目标物体速度的现象。在Python中,我们可以使用各种库和工具来处理雷达数据和实现雷达多普勒效应的计算。通过这些工具,我们可以更好地理解雷达技术,并进行雷达信号处理和分析。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值