黎曼可积和若尔当可测

转载。整理了排版。原地址如下。
http://blog.sina.cn/dpool/blog/s/blog_1502d50e00102xc0u.html?vt=4

通常我们普通高校大学生所学习的高等数学或数学分析(俗称微积分)中用的是jordan测度下的积分。jordan测度有一个好处,好理解。我们先来谈谈一元函数f(x)在某一区间[a,b]上的riemann积分,这在数学分析中是这么定义的:将区间[a,b]进行有限的分割,在各个小区间上△xi取任意一点ei,那么如果∑f(ei)△xi在max{△xi}趋于0时趋于某个数,并且这个极限不依赖ei在区间上的各个小区间上的选取(显然该极限唯一),那么称这个函数riemann可积。
我们先来给出R^n
中的一个集合的jordan外侧度的定义:
对于一个集合,用有限个n维正方体覆盖这个集合( 覆盖是指该集合包含于这些正方体集的内部,内部大家用自己理解的概念就行,严格定义是拓扑内容,这里不多做介绍了。),那么这有限个方体的体积之和的下确界为该集合的jordan外侧度。其中n维正方体体积定义为a^n
(a为正方体边长,n为空间维数,当n = 2时就是我们熟知的正方形, n=1时则为一个闭区间)。再来给一个集合的 jordan内测度 的定义:
对于一个集合,用有限个n维正方体填充这个集合( 填充是指该集合的内部包含这些正方体集),那么这有限个方体的体积之和的上确界为该集合的jordan内测度。
接下来是jordan可测的定义:
一个集合是jordan可测的,若它的jordan内测度等于它的jordan外侧度,此时将它的jordan外测度和jordan内测度统一称为jordan测度。而R^n
中的可测集合的jordan测度一般俗称为这个集合所代表的图形的体积(二维空间中的体积俗称为面积,一维空间中的体积俗称为长度)。
这里很直观地有一个定理:R^n
中的集合jordan可测的充要条件为它的边界的jordan测度是0(边界就按地图上的边界来理解,严格定义从略)。
证明从略。
我们也有这样一个定理:
有限个jordan可测集的并或交必然是jordan可测集。riemann积分正是在jordan测度意义下的积分。区间,三角形,正方形,正方体,圆,球体,n维正方体,n维球体等等规则的几 何图形显然都是jordan可测的(可以采用小正方体覆盖的方法去证明圆和球的面积哦)。R^n显然也是jordan可测的,因为它的外测度和内测度都等于正无穷。那有什么是jordan不可测的集合吗?当然有(要不然定义jordan可测干嘛呢),
比如[0,1]上的有理数点。由于这些有理数点在[0,1]上稠密(一个集合a在包含它的集合b上稠密是指b中任意点都可以用a中的点去逼近(逼近是指a中存在点列收敛于b中的这个点),它的jordan外测度显然是1,jordan内测度显然是0,所以不是Jordan可测集,这直接造成了dirchlet函数不是riemann可积的(该函数定义在[0,1]上,在有理数点上取1,无理数点上取0,这个函数显然不是riemann可积的)。而我们又很容易的可以知道有界闭区间上的连续函数必然riemann可积(自己可以用riemann可积的定义试着去证明)。那么dirchlet函数真的差连续函数很多吗?或许是,因为它在[0,1]上处处不连续,或许又不是,这个我们会到下一篇文章再讨论。

上文提到连续必可积,那么一个函数可积必然连续吗?显然不是。比如你把一个一元连续函数上某一点的函数值改成另外的值,那么它在该点不连续了。但它在包含该点的任意有界闭区间上仍然riemann可积(显然)。所以连续只是riemann可积的充分但不必要条件。那么什么是一个函数riemann可积的充分必要条件呢?这个我们也到以后再讨论。
关于riemann积分的优点和缺点,我们进行以下逐一分析
优点1:好算,可以利用newton-leibniz公式进行计算,关键部分是要找到原函数。
优点2: riemann可积函数的性质很好。不仅有界,而且还有关于区间进行细分以后振幅的一些性质(阐述从略)以后我们会说明:riemann可积函数和连续函数是差不多的。
缺点1:很多函数无法进行riemann积分。比如上文提到的dirchlet函数。
缺点2:对于有极限的函数列(该极限是riemann可积的,并且函数列积分以后也是有极限的),函数列积分的极限不一定等于极限函数的积分。
比如nx*(1-x2)n,它在[0,1]上每个点都趋于0,所以函数极限在[0,1]上的积分为0。但该函数列在[0,1]进行积分以后再取极限的结果是1/2(它的原函数是1/2n/(n+1)(1-x2)(n+1),运用newton-leibniz公式计算得到1/2*n/(n+1),取极限后得到1/2。
缺点3: 函数取绝对值后riemann可积不能推出它是riemann可积的。(可以自己去构造一些实例看看)

思考题1;证明riemann函数riemann可积(有一定难度有一定难度,函数定义见百度百科)
2;证明有界闭区间上的单调函数riemann可积(简单)
3;证明有界闭区间上的凸(凹)函数必定可积(凸函数定义为f(tx + (1-t)y)< = tf(x) + (1-t)f(y),t属于[0,1],而凹函数的定义则相反,证明有一定难度)
4 证明dirchlet函数riemann不可积。(简单)
5;尝试构造除dirchlet函数以外的其他有界的riemann不可积函数。
6;尝试构造上文中具有riemann积分缺点2性质的函数。
7;证明一元连续函数曲线所围成的有界图形是jordan可测的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值