YOLOv11多模态(可见光+红外光,基于Ultralytics官方代码实现,可魔改网络)

本文介绍了YOLOv8的多模态功能,支持RGB和红外光的双输入,提供前端融合网络信息、训练数据集结构和多模态检测的UI实现。附赠1000张RGB+红外数据集,可以直接使用官方环境进行部署。
摘要由CSDN通过智能技术生成

咸鱼同名同头像

兼容Ultralytics版YOLOv3、v5、v6、v8、v9、v10、v11,可加载双图片输入(一般为可见光+红外光),项目代码基于官方ultalytics实现。

目前已实现三模态图片输入(能给网络同时输入三种模态的图片),功能与双模态相同,如有其他输入需求也可私聊定制。

项目提供的三种融合模型demo,仅供参考和对比试验,不能作为创新点使用,发论文请自己魔改

以下为本人自己论文部分对比实验,仅供参考,所用数据集为LLVIP,标红的三个即为本项目提供的模型demo:

c2704cd46fa144e183db523a1ff1b355.png

5790c98317a54ec386c0934795d4b4f6.png

可自己魔改网络,插注意力、换主干、激活函数、损失函数等均(与官方代码的更改方法一模一样),高度兼容,一个参数即可切换单模态/双模态。

------------------------------------------

代码有偿,需要请私信

项目包含:

YOLOv11多模态(兼容v3,v5,v6,v8,v9,v10,包含下面介绍的3种融合方式,本博文所有图片均来自该项目,所见即所得)

送:

1. 1000张 RGB+红外数 小据集,用于测试代码能否跑通

2. 3个开源 RGB+红外数据集(LLVIP、KAIST、M3FD),已全部对齐并制作为yolo格式,可直接训练

------------------------------------------

加米可选:

YOLO多模态UI界面实现

------------------------------------------

一、项目结构展示

1. 项目文件

7531ee14a530401ba8e137571eb6aeb7.png

2. 单/双模态切换

仅需在 default.yaml、yolo11.yaml 更改参数即可切换单双模态

4b61c93543474cf3a043219ffc668e29.png

fe5dce5a27e249a7a0e4410077205dbd.png

3. 提供的三种融合方式demo

这里不展示详细的yaml文件

1、前端融合

49cbb2736f1448708e38d909405e0998.png

2、中间融合

95c07ca1e19144719198713586c24309.png

3、后端融合(双路)

e7f41155323547488bb322b29764607b.png

前端融合与单模态原模型对比,下图仅展示了前端融合网络,中间和后端融合均已实现,但不作展示:

yolo11原模型(单输入,3通道)

fab83053b1cf47598f99b5206a5311be.png

yolo11双模态(前端融合)(双输入,3+3=6通道)

c47fe87ac0f14758bb13b3095ec60bee.png

tips:红外为什么不是单通道,可以做单通道,但是训练可视化会产生一些问题,而且仅仅第一层多两个通道,参数量几乎是没有影响的,如果一定需要做单通道(RGB3+红外1),这边也可以定制。

三模态(三输入,3+3+3=9通道)

c8cf8f0ccb454a479ce2e6dbe18e6b96.png

二、多模态数据集结构

3a688991bf01428eb4bb3355d3407359.png

三、训练结果展示

蓝色为双模态RGB+IR,红色为单模态RGB

68d12f459fe447acbf0de23c38203276.png

0c0821da9ac94613816c8798c0c84980.png

e7308ed81a4e440e9894ce44bf905a44.png

四、多模态检测UI实现

7323eed6c54f492d874590b02ed3d7bd.png

评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dneccc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值