-
Bernouilli 随机变量:
- 定义:
- An individual trial has only two possible outcomes.
- 一个实验只有两个可能的结果,分别定义为成功(success)和失败(failure)。
- 定义:
-
二项分布 Binomial Distribution:
- 定义:
- the probability of having exactly k successes in n independent Bernouilli trials with probability of success p。
- 描述了在n次独立的Bernouilli实验中恰好有k次成功的概率,且每次实验成功概率均为p。
- # of scenarios * P(single scenario)
- 条件:
- 每次Bernouilli实验是相互独立的 Independent
- 实验的个数n是固定的
- 每次实验的结果要被分成成功或者失败中的一个
- 每次实验成功的概率必须相同
- 我们对n次中成功的次数(Y)感兴趣
- 二项分布的期望值和标准差:
- 计算
的两种方法:
- 代入公式
- 使用R语言
- 这里的例子是一共十次实验,每次成功的概率是0.13,求正好成功8次的概率:
-
dbinom(8, size = 10, p = 0.13)
- 定义:
-
正态近似 Normal approximation to binomial
- 当n足够大时(有至少10个成功和10个失败),那么该二项分布的形状就很接近一个正态分布。
- 上述两个条件通过后,可用以下公式进行估算:
,其中
,
。
- 当n足够大时(有至少10个成功和10个失败),那么该二项分布的形状就很接近一个正态分布。
以下是Duke Coursera笔记,持续更新。