机器学习(二)线性模型---LR

本文深入探讨了线性模型中的LR(逻辑斯蒂回归),介绍了其作为二分类模型的基础,强调了LR的概率可解释性和在极大似然估计中的应用。讨论了sigmoid函数的特点和LR模型的优缺点,以及在广告点击率预测模型构建中的特征处理步骤。
摘要由CSDN通过智能技术生成
机器学习(二)线性模型—LR

2.2 LR
  2.2.1 基础
  LR是一种二分类模型,属于线性模型的一种,是广义线性分类模型,采用极大似然估计,具有概率可解释性
  条件概率:

P(y=1|x)=σ(wx)(14) (14) P ( y = 1 | x ) = σ ( w ⋅ x )

P(y=0|x)=1σ(wx)(15) (15) P ( y = 0 | x ) = 1 − σ ( w ⋅ x )

  Logits/log odds,一件事发生与不发生的比率:
logp1p(16) (16) l o g p 1 − p

  2.2.2 推导:
  似然函数:
i=1Nσ(wxi)yi(1σ(wxi))1yi(17) (17) ∏ i = 1 N σ ( w ⋅ x i ) y i ( 1 − σ ( w ⋅ x i ) ) 1 − y i

  对数似然函数:
i=1Nyilogσ(wxi)+(1yi)log(1σ(wxi))(18) (18) ∑ i = 1 N y i l o g σ ( w ⋅ x i ) + ( 1 − y i ) l o g ( 1 − σ ( w ⋅ x i ) )

  首先令 wxi+b=a w ⋅ x i + b = a
dloss=i=1Nyiσ(a)σ(a)da(1yi)σ(a)1σ(a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值