机器学习(二)线性模型—LR
2.2 LR
2.2.1 基础
LR是一种二分类模型,属于线性模型的一种,是广义线性分类模型,采用极大似然估计,具有概率可解释性
条件概率:
P(y=1|x)=σ(w⋅x)(14) (14) P ( y = 1 | x ) = σ ( w ⋅ x )
P(y=0|x)=1−σ(w⋅x)(15) (15) P ( y = 0 | x ) = 1 − σ ( w ⋅ x )
Logits/log odds,一件事发生与不发生的比率:
logp1−p(16) (16) l o g p 1 − p
2.2.2 推导:
似然函数:
∏i=1Nσ(w⋅xi)yi(1−σ(w⋅xi))1−yi(17) (17) ∏ i = 1 N σ ( w ⋅ x i ) y i ( 1 − σ ( w ⋅ x i ) ) 1 − y i
对数似然函数:
∑i=1Nyilogσ(w⋅xi)+(1−yi)log(1−σ(w⋅xi))(18) (18) ∑ i = 1 N y i l o g σ ( w ⋅ x i ) + ( 1 − y i ) l o g ( 1 − σ ( w ⋅ x i ) )
首先令 w⋅xi+b=a w ⋅ x i + b = a
dloss=∑i=1Nyiσ′(a)σ(a)da−(1−yi)σ′(a)1−σ(a