这篇文章目的是改变你工作生活与智能化交互的习惯,从而提升效率300%以上。这篇文章关注点为精力管理和效率管理相关的逻辑、工具与方法论。
AI火起来的这两年,我经常想什么人需要AI,至少管理者应该是不需要,因为管理者的职责主要是管理人、组织工作流程、制定决策以及确保团队达成目标,更多地涉及人力资源和策略层面的工作。如果AI普及了,那么你让管理者下去一线去管AI,管AI即用生产工具,那岂不是违背管理的本质。经验丰富的AI使用者,通过AI可以开创事业,成为技术和商业管理者,随着智能社会的发展,那么传统的管理者会不会逐步灭绝?
AI能改变人类的贫困?《贫穷的本质》揭示了贫困者的日常生活和决策模式,展示了贫困并不仅仅是资源的缺乏,而是复杂的社会、心理、经济等多方面因素交织的结果。大部份打工人生活在不确定性的贫困之中,面临着随时可能出现的健康、经济和家庭危机。这种长期的压力会消耗他们的心理带宽,使他们无法将精力集中于规划未来或做出理性、长远的决策。简单来说,贫困会导致人们在应对日常生存压力时,难以高效管理精力,常常陷入短视的决策模式中。
在日常生活和工作中,常常会遇到一些人和事情表现出效率低下、缺乏时间观念、职责不清以及没有边界感的情况。这些问题不仅影响个人的工作表现和心理健康,也可能对团队合作和组织整体效率产生负面影响。
1. 效率低
原因分析:
-
缺乏明确目标:没有清晰的目标和计划,导致工作无序,效率低下。
-
缺乏使用电脑或AI技能:在现代工作环境中,电脑和AI工具已经成为提高工作效率的重要手段。缺乏这些技能会导致无法充分利用技术资源,从而影响工作效率。
-
缺乏动力或兴趣:对工作缺乏热情,缺乏内在动力推动高效完成任务。
-
干扰和分心:频繁的干扰,如社交媒体、电话等,影响工作专注度。
2. 缺乏时间观念
原因分析:
-
缺乏时间规划:没有制定详细的时间表,无法有效分配时间。
-
低估任务时间:对完成任务所需时间估计不足,导致时间管理混乱。
-
优先级不清:无法区分任务的轻重缓急,导致重要任务被拖延。
-
缺乏自律:难以坚持时间安排,自我管理能力不足。
3. 职责不清
原因分析:
-
组织结构不明确:公司或团队的职责分工不明确,导致个人职责模糊。
-
沟通不畅:上下级之间或同事之间沟通不充分,导致职责界定不清。
-
角色重叠或缺失:多个角色之间职责重叠,或缺乏某些关键职责的明确分配。
4. 缺乏边界感
原因分析:
-
个人界限不明确:无法明确个人与他人的界限,导致工作与生活混淆。
-
文化和环境因素:工作环境中缺乏对边界的尊重,如过度加班、频繁打扰等。
-
缺乏自我认知:无法明确自己的需求和界限,容易被他人侵犯。
-
沟通技巧不足:难以有效表达自己的边界需求,导致他人无视。
我们需要结合个人管理方法论、计算机自动化工具、AI大模型提升我们的生活工作质量。
以下表格先列出常规提升生活和工作中的手段和方法,逐步展开讨论叠加AI buff。
-
很多人还没有用过AI。
-
有的人能让AI给出眼前一亮的语言,但无法让AI给出犀利的观点。
-
有的人已经可以跟AI实现协作,协作水平有高低,就如同人的观点有高低之分。
2023-2024 这两年AI模型发展如下:
用什么模型?
我们有三个层次的模型是可以接触到。
第一,国际模型,如上表的各类模型,以openAI为首。
第二,国产模型,通义千问、KIMI,秘塔,都有硬实力和一流的服务。
第三,开源模型,如进口的LLAMA,国产的智谱清言chatGLM。
怎么使用?
国际模型可以国内第三方API接入平台访问,有些企业有专用通道可以直接访问原版。
国产模型直接访问。
开源模型通过公开网站或者自己部署访问。
使用技巧:
1、简单问题,用当期最前沿模型出结果。
2、复杂问题需要混合模式,选三个模型,例如claude、gemini、GPT4o同时输出,然后再用逻辑最强模型如GPT o1做混合结果。
3、编程用claude或者openai GPT出结果。
4、文章用不限输出token约束的模型出结果。因为有些平台会动态调节,所以还自己对比测试。我们需要1000字时候,他们只能吐100个字。
以上都是基本操作了,真实使用过程还是逻辑、使用思路、方法论等,都比较重要,需要自己摸索,就如日常搬砖,得自己摸索出怎么省力。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。