在人工智能快速发展的今天,AI在医疗领域展现出巨大潜力。这项技术不仅能够提高诊断准确性,还能扩大医疗服务覆盖范围,减轻医护人员的行政负担,使他们能够将更多精力投入到病患护理中。然而,医疗AI的开发门槛依然很高,需要海量数据、专业知识和强大的计算资源。为了降低这一门槛,Google研究院健康AI团队于近日推出了全新的开源模型套件——Health AI Developer Foundations(HAI-DEF)。
在人工智能快速发展的今天,AI在医疗领域展现出巨大潜力。这项技术不仅能够提高诊断准确性,还能扩大医疗服务覆盖范围,减轻医护人员的行政负担,使他们能够将更多精力投入到病患护理中。然而,医疗AI的开发门槛依然很高,需要海量数据、专业知识和强大的计算资源。为了降低这一门槛,Google研究院健康AI团队于近日推出了全新的开源模型套件——Health AI Developer Foundations(HAI-DEF)。
医疗领域的应用场景极其广泛,远超现有开发者能够覆盖的范围。由于临床应用对模型性能要求极高,再加上数据获取难度大、专业门槛高等因素,导致许多潜在的开发者难以将他们的创新理念从概念转化为原型,更不用说最终应用到临床实践中。为了让更多开发者能够投身医疗AI创新,Google推出的HAI-DEF提供了开源权重模型、教学用Colab笔记本以及全面的开发文档,这些资源覆盖了从早期研究到商业化的各个阶段。
在本次HAI-DEF的首次发布中,Google推出了三个专注于医疗影像应用的重要模型。首先是CXR Foundation胸部X光模型,该模型基于EfficientNet-L2架构,使用超过80万张X光片进行训练,支持图像分类、语义搜索和零样本分类等功能。其次是Derm Foundation皮肤影像模型,它采用BiT ResNet-101x3架构,可用于皮炎、黑色素瘤等皮肤病诊断,同时支持身体部位识别和图像质量评估。第三个是Path Foundation病理学模型,它基于ViT-S架构,专门处理H&E染色图像,可用于肿瘤分级、组织分类等重要临床任务。
为了确保这些模型能够真正服务于开发者社群,Google提供了多种灵活的使用方式。开发者可以通过Vertex AI Model Garden和Hugging Face平台下载这些模型,并在本地或云端环境中运行。更重要的是,这些模型不仅可以用于研究项目,还支持商业应用开发。开发者还可以根据具体需求对模型进行微调,以提升特定场景下的性能表现。
2024最新全套大模型学习资料:大模型学习成长路线、书籍&学习文档、视频教程、项目实战、面试题汇总等,免费分享~
有需要的同学可以通过【微信扫描下方二维码】,即可免费领取!!!
HAI-DEF的发布标志着Google在支持医疗AI生态发展方面迈出了重要一步。该项目与此前发布的Medical AI Research Foundations、Open Health Stack以及Population Dynamics Foundation Model等项目形成互补,共同推动医疗AI的民主化进程。Google表示将继续投入资源支持这一领域的发展,通过不断扩充模型库和完善技术文档,帮助全球开发者更好地发挥AI在医疗健康领域的潜力。
医疗AI的未来发展需要更多创新者的参与和探索。通过开源这些基础模型,Google正在为构建一个更加开放、创新的医疗AI生态系统铺平道路。这不仅将帮助开发者更容易地进入这个领域,更重要的是,它将推动医疗AI技术的快速发展,最终造福更多患者。
医疗领域的应用场景极其广泛,远超现有开发者能够覆盖的范围。由于临床应用对模型性能要求极高,再加上数据获取难度大、专业门槛高等因素,导致许多潜在的开发者难以将他们的创新理念从概念转化为原型,更不用说最终应用到临床实践中。为了让更多开发者能够投身医疗AI创新,Google推出的HAI-DEF提供了开源权重模型、教学用Colab笔记本以及全面的开发文档,这些资源覆盖了从早期研究到商业化的各个阶段。
在本次HAI-DEF的首次发布中,Google推出了三个专注于医疗影像应用的重要模型。首先是CXR Foundation胸部X光模型,该模型基于EfficientNet-L2架构,使用超过80万张X光片进行训练,支持图像分类、语义搜索和零样本分类等功能。其次是Derm Foundation皮肤影像模型,它采用BiT ResNet-101x3架构,可用于皮炎、黑色素瘤等皮肤病诊断,同时支持身体部位识别和图像质量评估。第三个是Path Foundation病理学模型,它基于ViT-S架构,专门处理H&E染色图像,可用于肿瘤分级、组织分类等重要临床任务。
为了确保这些模型能够真正服务于开发者社群,Google提供了多种灵活的使用方式。开发者可以通过Vertex AI Model Garden和Hugging Face平台下载这些模型,并在本地或云端环境中运行。更重要的是,这些模型不仅可以用于研究项目,还支持商业应用开发。开发者还可以根据具体需求对模型进行微调,以提升特定场景下的性能表现。
HAI-DEF的发布标志着Google在支持医疗AI生态发展方面迈出了重要一步。该项目与此前发布的Medical AI Research Foundations、Open Health Stack以及Population Dynamics Foundation Model等项目形成互补,共同推动医疗AI的民主化进程。Google表示将继续投入资源支持这一领域的发展,通过不断扩充模型库和完善技术文档,帮助全球开发者更好地发挥AI在医疗健康领域的潜力。
医疗AI的未来发展需要更多创新者的参与和探索。通过开源这些基础模型,Google正在为构建一个更加开放、创新的医疗AI生态系统铺平道路。这不仅将帮助开发者更容易地进入这个领域,更重要的是,它将推动医疗AI技术的快速发展,最终造福更多患者。
AI 速读
AI海报
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。