导语:
在人工智能的浪潮中,一款名为DeepSeek的国产AI大模型以其卓越的性能和颠覆性的成本控制,在全球科技界引发热议。其创始人梁文锋,凭借其敏锐的洞察力和坚定的创新精神,成为科技界的新星。今天,我们将深入分析DeepSeek的崛起之路,探讨其背后的技术优势和对全球科技格局的影响。
最近,随着梁文锋的DeepSeek持续火爆,美股的科技股受到暴击,上周五AI芯片巨头英伟达暴跌3%。美股盘前交易,芯片相关的科技巨头英伟达、台积电双双暴跌7.5%,光刻机巨头ASML暴跌8.5%。为何梁文锋横空出世,把美股科技股给干翻了呢?这要从梁文锋和DeepSeek说起。
一、横空出世的DeepSeek与梁文锋的转型之路
梁文锋,1985年出生于广东湛江,自幼展现出非凡的才华。在浙江大学完成本硕学业后,他迅速在量化投资领域崭露头角,并于2016年联合校友创办了幻方量化,成为行业内的佼佼者。
然而,梁文锋的视野并未局限于此。2022年,他预见到了通用人工智能(AGI)的巨大潜力,决定转型,成立了杭州深度求索人工智能基础技术研究有限公司,致力于AI大模型的研发。
二、深度求索公司的成立背景与DeepSeek的技术优势
梁文锋的转型并非一时冲动,而是基于对AI发展趋势的深刻理解。OpenAI的ChatGPT的发布,让他看到了大模型在未来的广泛应用前景。深度求索公司的成立,正是梁文锋对这一趋势的回应。
DeepSeek的技术优势体现在以下几个方面:
1、 创新的训练方法:DeepSeek采用的自监督学习和迁移学习技术,使得模型能够在无需大量标注数据的情况下学习,大大降低了训练成本。
2、 成本控制:DeepSeek通过优化算法和提升硬件利用效率,实现了极低的推理成本,这一成本优势在商业应用中尤为显著。
3、 高效的GPU集群利用:DeepSeek的GPU集群使用效率远超行业平均水平,这不仅降低了成本,还缩短了模型迭代周期。
4、 强大的性能:DeepSeek在自然语言处理、图像识别等多个领域的性能表现优异,部分指标甚至超越了业界领先的模型。
5、 定制化服务:DeepSeek的灵活性使其能够根据不同行业和企业的需求,提供个性化的AI解决方案,加速了AI技术的商业化进程。
三、DeepSeek引发的科技地震及其影响分析
DeepSeek的问世,不仅打破了传统的AI研发模式,还对全球科技产业造成了深远的影响。
以下是对其影响的分析:
1、 技术创新:DeepSeek的成功展示了人工智能领域的持续创新,尤其是在模型效率和成本控制方面的突破。
2、 市场竞争:DeepSeek的出现加剧了AI领域的竞争,迫使国际巨头重新审视自己的技术路线和市场策略。
3、 投资风向:DeepSeek的崛起引发了投资者对AI领域的重新评估,可能导致资金流向更注重技术创新和成本效益的企业。
4、 行业应用:DeepSeek的低成本和高性能,使得AI技术能够更快地渗透到各行各业,推动产业升级。
结束语
梁文锋和他创立的DeepSeek,以其独特的创新路径和技术优势,在全球科技界掀起了一场变革。这场变革不仅体现了中国科技企业的实力,也为全球科技创新提供了新的动力。DeepSeek的影响深远,它正在以下几个方面重塑全球科技格局:
首先,DeepSeek的崛起标志着中国在人工智能领域的重大突破,打破了西方国家在该领域的垄断地位,促使全球技术竞争格局重新洗牌。其次,DeepSeek的低成本和高性能使得AI技术更加亲民,推动了AI技术的普及和民主化,让更多中小企业和开发者能够享受到AI带来的便利。
此外,DeepSeek的应用加速了AI技术与传统行业的融合,推动了医疗、教育、金融等领域的创新,提高了行业效率,改善了用户体验。同时,DeepSeek的成功吸引了更多资本进入AI领域,尤其是大模型和通用人工智能的研究,预计将引发新一轮的投资热潮。
人才培养与流动方面,DeepSeek的案例激励了更多年轻人才投身于AI领域的研究与开发,促进了人才流动和知识传播,为全球AI产业的发展提供了智力支持。在伦理和法律规范方面,DeepSeek等AI技术的广泛应用引发了社会对于AI伦理和法律规范的深入讨论,推动了相关法律法规的完善。
最后,DeepSeek的国际化进程促进了国际间的科技交流与合作,但同时也带来了技术出口管制、数据安全等国际争端的挑战。
总之,DeepSeek的出现不仅是人工智能领域的一个里程碑,也是中国科技走向世界舞台中心的重要一步,其影响将在未来几年甚至更长时间内,持续影响着全球科技发展的方向和速度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。