DeepSeek与Open AI都属于人工智能发展其中的一个重要技术方向,是一种大语言模型的应用技术。岚眼虽不是AI专家,但也开始学习这一技术的基础知识,有利于更好地发挥它的价值。
一、什么是大语言模型
大语言模型(LLM)是一种利用机器学习技术来理解和生成人类语言的人工智能模型,它可以使用非常大的数据集来识别、总结、翻译、预测和生成内。Open AI的ChatGpt就是一个典型的大语言模型。LLM使用基于神经网络的模型,通常运用自然语言处理(NLP)技术来处理和计算其输出。NLP 是人工智能(AI)的一个分支领域。
二、大语言模型工作原理
大模型是通过这种"机器学习"的方式,掌握了海量的语言知识。它就像一个超级学霸,通过阅读大量的文章、书籍、网页等,了解了每个词的意思,词语之间的关联,以及不同语境下语言的使用方式。
举个形象的比喻,大模型的“大脑”就像一个巨大海量的图书馆。图书馆中每本书就像一个知识点,书与书之间的联系就像知识点之间的逻辑关系。当人们向大模型提出一个问题时,它就会在自己的“图书馆”中搜索相关的书籍,迅速找到问题的答案。这个过程就叫做"推理",在推理之后再输出相应的答案。
所以,语言大模型的“魔力”是建立在海量学习和深度理解之上,它虽然不是真正人类意义上的“思考”,但通过对语言的精准掌握和灵活运用,能够模拟人类的许多认知能力,如阅读理解、逻辑推理、创意呈现等。
大语言模式示意图
从知识层面来讲,大模型并非是开创0-1阶段的新领域,而是有效率的汇总和提炼出有价值的信息和知识要点,助力人类探索新领域。
三、大模型作用与局限
大模型现阶段主要应用场景价值:
1、文本生成:语言生成能力,如根据提示撰写电子邮件、媒体文章或其他专业内容,并加以提炼和润色。
2、内容摘要:将长文章、新闻报道、研究报告、公司文档甚至客户历史记录汇总成根据输出格式定制长度的完整文本。
3、AI 助手:利用聊天机器人,可以回答客户询问、执行后端任务并以自然语言提供详细信息,作为集成式自助客户服务解决方案的一部分。
4、代码生成:帮助开发人员构建应用程序,查找代码中的错误并发现多种编程语言中的安全问题,甚至在它们之间进行“翻译”。
5、情感分析:分析文本,确定客户的语气,以便大规模了解客户反馈并帮助进行品牌声誉管理。
6、语言翻译:通过流畅的翻译和多语言功能,为各语言和地域的业务组织个人提供更广泛便利的语言交流。
语言大模型主要局限:
大模型本身就有相当的局限性和缺陷。例如以下领域就是大模型特别不擅长的范围。
1. 隐含知识(如未被列入数据库)
2. 幻觉问题
3. 决断问题
4. 特定专业
5. 最前沿知识
6. 人类未知领域
任何大模型在未列入大模型数据库的信息和知识领域,都可能被忽略,如果搜索的数据和知识有错误和偏差,检索推理之后也可能误导性输出。当下,大模型也不会超越人类现有的知识和认知边界。
现阶段,语言大模型并不解决专业精深和0-1研发领域的问题,更适合成为协助人们最便捷的启蒙式和参考性助手。
大模型不是AI技术发展的全部体现,也不是人们掌握科技进步的唯一工具。而且,语言大模型此刻还属于技术发展的最早期,一个孩童阶段,不必对此有过高的期待。
无论现在还是今后,我们也要理性看待大模型,不盲从、不迷信,更不能滥用。
发明和推进AI的是人类,但最终发挥技术价值利己还是利他的是人性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。