今天跟大家分享下我们如何安装插件,将 DeepSeek嵌入到Excel表格,能够直接操作Excel,大大提升办公效率
一、插件下载
现在想要实现这个效果,就必须要安装插件了,EXCEL、WPS都支持,真真做到了普惠众生,官网在下方,安装对于Excel有版本和系统的要求
Excel最低2013,系统最低WIN7,其他更低的版本跟系统应该就不支持了,
WPS的话直接升级到最新版即可
网站:https://www.office-ai.cn/static/introductions/officeai/download.html
二、插件安装
安装的话就比较简单了,双击下载好的软件,先点击【同意】,然后设置下安装的路径,这个路径最好跟你的办公软件的磁盘位置是同一个
微软的办公套件保持默认即可,默认就在C盘安装
WPS的办公套件如果不在C盘就需要手动更改下,当然你懒,不更改也是可以的
安装完成后会弹出一个窗口,根据自己的软件类型来选择,是Excel就勾选Excel,是WPS就勾选WPS,帮助文档最好也看下,了解下基本的操作,最后点击完成即可
三、使用插件
插件安装完毕后,会在上访显示Office AI的名字,点击它能看到一些功能,在最左侧点击【面板右侧】就能显示面板,之后就能在当前的窗口中对话,并且操作Excel的
如下动图,我们提出的问题为:请统计D5:D13的平均值 AI经过计算后会得到一些结果
然后弹出对应的窗口,我们需要选择一个单元格位置来放置结果
插件的编写大佬也提供了一些演示的案例,大家可以动手试一下。
四、WPS的问题
WPS用户打开后不显示插件,需要手动启动一下,具体的步骤如下图
点击【工具】找到【COM加载项】然后找到【HyExcelAI】勾选下,最后点击确定就能启动插件了
如果你做完了上述操作还是不显示,就可能是【COM加载项】没有启用,我们需要点击【文件】,找到【信任中心】下方勾选【启动所有第三方COM加载项】确定后重启WPS即可
通过以上的设置就能将通过AI工具来直接操作Excel了,对于大多数人就已经够用了,如果你想获取更强的向性能,也可以通过API来调用DeepSeek,下面我来简单的操作下
五、调用硅基流动API
其实这个插件是可以直接调用DeepSeek的API的,但是现在DeepSeek太卡了,建议大家使用硅基流动,在里面调用DeepSeek速度更快,也是满血的R1模型,等后期DeepSeek不卡了再切换回来就行了。手机号就能直接注册
官网:https://account.siliconflow.cn/
注册后左侧点击【API秘钥】,右上角点击【新建API秘钥】随便的写一个名字然后点击【确定】
新建完毕后会显示秘钥,把鼠标放在上面就能直接复制了
六、部署API
打开AI助手,然后右上角点击【三个点】找到【设置】选择【大模型设置】勾选【本地模型/API-KEY】这一步该应会提示【安装本地化私有服务器】我已经安装过了就没显示,大家直接跟着操作安装即可
安装完毕后点击【ApiKey】先选择【模型平台】设置为【硅基流动】然后把鼠标放在【API】那里直接点击鼠标右键,找到【粘贴】直接做粘贴,最后点击【刷新模型列表】在列表中找到DeepSeek的R1模型选择确定,然后再保存,成功后会有提示,现在就将R1模型嵌入到了表格中了
至此就将DeepSeek嵌入了表格中,大家可以动手试一下,操作并不难的,Word文档也是类似的效果,就不再掩饰了,大家可以自己体验一番
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。