DeepSeek国产AI大模型横空出世,助力医疗健康行业智能化转型驶入快车道。国药医疗率先完成DeepSeek-R1模型本地化部署,并推动“智医”全场景专业模型的深度训练,精准赋能医疗服务质量与效率的升级,引领所属医疗机构迈向智慧医疗新时代。
1、技术筑基:国药医疗×DeepSeek,打造本地化AI共享平台
依托国产高性能硬件资源,国药医疗推进DeepSeek-R1模型的本地化部署,并面向旗下140余家医疗机构开放共享。此举不仅大幅降低了AI应用门槛,更实现了医疗数据在私域内的共享与高效利用,为智能化转型提供“基础设施级”支持。
2、场景深耕:“大模型+语料库”双轮驱动,加速医疗AI落地
针对医疗机构形态多样性与数智化进程差异,国药医疗构建分层递进的AI发展路径,先期围绕数据分析、辅助诊疗、合理用药、影像诊断与质控等挖掘应用:
- 智能“问数”,对接临床、运营管理等垂直领域数据集,实现医疗数据智能分析与决策优化,微调训练效率大幅提升。
- 智能“问诊”,基于健康档案库进行垂类训练,提供智能报告解读与辅助诊断建议,提升了基层医生的诊疗能力。
- 智能“问药”,整合百万级医学知识库,为临床药师提供实时用药建议,通过互联网诊疗平台持续优化模型精准度。
- 智能“影像”,深度嵌入国药医疗”智影云“平台,集中训练覆盖影像诊断全流程的智能质控模型,推动“拍片-诊断-报告”全链路质控智能化。
3、标杆实践:AI赋能医疗机构,释放全场景价值
- 国药同煤总医院
接入DeepSeek实现病历智能质控、临床辅助决策等功能,行政办公效率得以提升,诊断准确率达三甲医院领先水平。
- 新乡市中心医院
推进私域大模型与医院信息系统深度集成,已实现CT影像智能分析,将逐步接入医院信息系统、电子病历系统等,实现临床辅助诊断、病历智能质控等模型落地,成为医生的智能助手。
- 国药东风总医院
通过系列培训活动,推动AI技术在基层医疗机构的应用,助力区域医疗水平的提升。
当今,人工智能与医疗的深度融合正快速引领和推动医疗范式的变革,国药医疗肩负央企办医科技创新使命,在积极拥抱新技术、探索新变革的同时,充分研判自身软硬件基础和数智化转型的发展需要,秉持“技术赋能、医学为本、伦理先行”的原则,持续拓展AI在疾病预防、精准诊疗、健康管理等领域的深化应用,让技术温暖医疗,让“智医”惠民利民。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。