RAG现有框架总结:7个GraphRAG+17个传统RAG | 推荐收藏

17个传统 RAG 框架

传统的RAG(Retrieval-Augmented Generation)框架,是一种集成了多个关键环节的综合体系,这些环节包括文本切块(Chunk)、向量转换(向量化)、数据存储、信息检索、二次排序、内容生成、内容评估等。该框架的精髓在于能够灵活适应各种策略,例如文档处理方法和检索策略等。其中,具有代表性的实现有RAGFlow(专注于深度文档理解)、QAnything(引入重排序 Rerank 机制)以及高度可配置的 Dify 等。这些实现虽然在细节上有所差异,但基本原理相似。以下是17个传统 RAG 框架的总结:

1、AnythingLLM,具备完整的 RAG(检索增强生成)和AI代理能力。Github 地址:https://github.com/Mintplex-Labs/anything-llm

2、MaxKB,基于大型语言模型的知识库问答系统。即插即用,支持快速嵌入到第三方业务系统。Github 地址:https://github.com/1Panel-dev/MaxKB

3、RAGFlow,一个基于深度文档理解的开源RAG(检索增强生成)引擎。Github 地址:https://github.com/infiniflow/ragflow

4、Dify,一个开源的大型语言模型应用开发平台。Dify直观的界面结合了AI工作流、RAG流程、代理能力、模型管理、可观测性功能等,让您能快速从原型阶段过渡到生产阶段。Github 地址:https://github.com/langgenius/dify

5、FastGPT,基于LLM构建的知识型平台,提供即开即用的数据加工和模型调用能力,允许通过流程可视化进行工作流编排。Github 地址:https://github.com/labring/FastGPT

6、Langchain-Chatchat,基于Langchain和ChatGLM等不同大模型的本地知识库问答。Github 地址:https://github.com/chatchat-space/Langchain-Chatchat

7、QAnything,基于Anything的问题和答案。Github 地址:https://github.com/netease-youdao/QAnything

8、Quivr,使用Langchain、GPT 3.5/4 turbo、Private、Anthropic、VertexAI、Ollama、LLMs、Groq等与文档(PDF、CSV等)和应用程序交互,本地和私有的替代OpenAI GPTs和ChatGPT。Github 地址:https://github.com/QuivrHQ/quivr

9、RAG-GPT,RAG-GPT利用LLM和RAG技术,从用户自定义的知识库中学习,为广泛的查询提供上下文相关的答案,确保快速准确的信息检索。Github 地址:https://github.com/open-kf/rag-gpt

10、Verba,由Weaviate驱动的检索增强生成(RAG)聊天机器人。地址:https://github.com/weaviate/Verba

11、FlashRAG,一个用于高效RAG研究的Python工具包。Github 地址:https://github.com/RUC-NLPIR/FlashRAG

12、LightRAG,检索器-代理-生成器式的RAG框架。Github 地址:https://github.com/SylphAI-Inc/LightRAG

13、kotaemon,一个开源的干净且可定制的RAG UI。Github 地址:https://github.com/Cinnamon/kotaemon,

14、RAGapp,在企业中使用Agentic RAG的最简单方式。Github 地址:https://github.com/ragapp/ragapp

15、TurboRAG,通过预计算的KV缓存加速检索增强生成,适用于分块文本。Github 地址:https://github.com/MooreThreads/TurboRAG

16、TEN,实时多模态AI代理框架。Github 地址:https://github.com/TEN-framework/ten_framework

17、AutoRAG,RAG AutoML工具。Github 地址:https://github.com/Marker-Inc-Korea/AutoRAG

7个 GraphRAG 框架

GraphRAG 框架在微软颇受欢迎,随后衍生出了多个轻量级改进版本,例如LightRAG 和 nano-GraphRAG。同时,也有一些独具特色的变体,如 KAG。这些框架的核心改进在于,它们在传统 RAG 的基础上,加强了实体、社区以及文本切块(Chunk)之间的联系,并融入了现有知识图谱(KG)的知识,以此来提高信息检索的召回率和准确性。

这里总结7个:

1、LightRAG,简单快速的Graphrag检索增强生成。Github 地址:https://github.com/HKUDS/LightRAG

2、GraphRAG-Ollama-UI,使用Ollama的GraphRAG,带有Gradio UI和额外功能。Github 地址:https://github.com/severian42/GraphRAG-Ollama-UI

3、microsoft-GraphRAG,一个模块化的基于图的检索增强生成(RAG)系统。地址:Github https://github.com/microsoft/graphrag

4、nano-GraphRAG,一个简单、易于修改的GraphRAG实现。Github 地址:https://github.com/gusye1234/nano-graphrag

5、KAG,基于OpenSPG引擎的知识增强生成框架,用于构建知识增强的严格决策制定和信息检索知识服务。Github 地址:https://github.com/OpenSPG/KAG

6、Fast-GraphRAG,GraphRAG的轻量化版本。Github 地址:https://github.com/circlemind-ai/fast-graphrag

7、Tiny-GraphRAG,一个小巧的GraphRAG实现。地址:https://github.com/limafang/tiny-graphrag

在探索先进的信息处理技术领域,RAG 框架及其多样化的应用方案,比如:Naive RAG、Agentic RAG、Advanced RAG 等等,已经成为行业内的热门话题。为了帮助技术爱好者们深入理解和应用这些技术,我们精心打造了 AI Agent 项目实战训练营。这个训练营旨在通过实战演练,让您直接体验到从数据切割到内容生成的全流程,掌握关键技术的应用要领。我们承诺,通过专业的指导和实战操作,您将能够系统地提升自己在信息处理技术方面的实践能力。现在就加入我们,一起在 Agent 项目实战训练营中开启您的技术成长新篇章!

AI Agent 为啥如此火爆?

第一、这是大势所趋,我能正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被AI Agent 重写一遍;

第二、现在处于红利期,先入场的同学至少会享受4~5年的红利,拿高薪,并且会掌握更多的资源。

第三、企业需求旺盛,越来越多的企业开始在 AI Agent 领域进行创新尝试,这为我们提供了丰富的岗位机会和广阔的发展空间。

最近两年一直在研究大模型应用技术,大模型的价值太大了,AI Agent 的潜力太大了,“未来所有应用都将被 AI Agent 重写一遍”这句话也是今天听到最多的一句话。我的团队这两年,尤其是今年接了很多开发 AI Agent 的项目,越来越多的企业都开始做这方面的创新尝试。

AI Agent 足够重要,但也足够复杂,我这两年的实践的结论是,想开发出一个能够可靠稳定的 Agent 应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性等等,这些困难直接导致很人对其望而却步,或是遇到问题无从下手。一般的技术同学想要自己掌握 Agent 太难了。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 将 Neo4j 与 GraphRAG 结合用于 RAG 检索 #### 配置 Neo4j 实例 为了实现这一目标,首先需要启动并配置 Neo4j 的本地实例。这可以通过 Neo4j Desktop 完成,在其中可以轻松创建和管理多个 Neo4j 数据库实例[^1]。 #### 连接至 Neo4j 数据库 接着,通过 LangChain 提供的便捷模板来建立应用程序同 Neo4j 数据库之间的连接。LangChain 是一款专为简化此类操作而设计的框架,它能显著减少开发时间并提高效率[^2]。 #### 构建基于 HippoRAG 的架构 对于希望集成知识图谱功能的应用来说,HippoRAG 能够很好地满足需求。该方案支持将 Neo4j 图数据库作为底层存储机制,并可借助大型语言模型 API 和 NLP 工具包增强系统的语义理解和查询能力[^3]。 具体而言,GraphRAG (Retrieval-Augmented Generation) 方法允许系统不仅依赖于预先训练的语言模型生成回复,还会从外部资源——这里是 Neo4j 中的知识图谱——获取额外的信息以辅助决策过程。以下是简化的 Python 示例代码展示如何初始化这样的环境: ```python from langchain import LangChain, DatabaseConnector import neo4j from hipporag import KnowledgeGraph, RetrievalAugmentedGenerator # 初始化Neo4j连接器 db_connector = DatabaseConnector(driver=neo4j.Driver) # 创建知识图对象并与Neo4j关联 knowledge_graph = KnowledgeGraph(connector=db_connector) # 设置检索增强型生成器 rag_model = RetrievalAugmentedGenerator(knowledge_base=knowledge_graph) ``` 此段脚本展示了怎样构建一个能够访问 Neo4j 存储的数据并通过高级算法进行推理的回答系统。实际应用中可能还需要考虑更多细节和技术优化措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值