现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳

按照目前RAG发展的态势,可以进一步将现有RAG框架分为7个GraphRAG框架以及17个传统RAG框架,虽然很多是重复造轮子,但大家可以通过研读其实现代码,了解起内部实现机制,会很有收获。

一、十七个传统RAG框架

传统的RAG框架,指的是集chunk切分、向量化、存储、检索、生成等几个阶段于一体的RAG框架,其核心在于其中的不同策略适应,如文档处理、检索策略等,代表性的如RAGFlow(深度文档理解),也包括QAnything(重排rerank引入),也包括可高度配置的Dify等,大致雷同,下面归置17个:

1、AnythingLLM,具备完整的RAG(检索增强生成)和AI代理能力。地址:https://github.com/Mintplex-Labs/anything-llm

2、MaxKB,基于大型语言模型的知识库问答系统。即插即用,支持快速嵌入到第三方业务系统。地址:https://github.com/1Panel-dev/MaxKB

3、RAGFlow,一个基于深度文档理解的开源RAG(检索增强生成)引擎。地址:https://github.com/infiniflow/ragflow

4、Dify,一个开源的大型语言模型应用开发平台。Dify直观的界面结合了AI工作流、RAG流程、代理能力、模型管理、可观测性功能等,让您能快速从原型阶段过渡到生产阶段。地址:https://github.com/langgenius/dify

5、FastGPT,基于LLM构建的知识型平台,提供即开即用的数据加工和模型调用能力,允许通过流程可视化进行工作流编排。地址:https://github.com/labring/FastGPT

6、Langchain-Chatchat,基于Langchain和ChatGLM等不同大模型的本地知识库问答。地址:https://github.com/chatchat-space/Langchain-Chatchat

7、QAnything,基于Anything的问题和答案。地址:https://github.com/netease-youdao/QAnything

8、Quivr,使用Langchain、GPT 3.5/4 turbo、Private、Anthropic、VertexAI、Ollama、LLMs、Groq等与文档(PDF、CSV等)和应用程序交互,本地和私有的替代OpenAI GPTs和ChatGPT。地址:https://github.com/QuivrHQ/quivr

9、RAG-GPT,RAG-GPT利用LLM和RAG技术,从用户自定义的知识库中学习,为广泛的查询提供上下文相关的答案,确保快速准确的信息检索。地址:https://github.com/open-kf/rag-gpt

10、Verba,由Weaviate驱动的检索增强生成(RAG)聊天机器人。地址:https://github.com/weaviate/Verba

11、FlashRAG,一个用于高效RAG研究的Python工具包。地址:https://github.com/RUC-NLPIR/FlashRAG

12、LightRAG,检索器-代理-生成器式的RAG框架。地址:https://github.com/SylphAI-Inc/LightRAG

13、kotaemon,一个开源的干净且可定制的RAG UI。地址:https://github.com/Cinnamon/kotaemon,

14、RAGapp,在企业中使用Agentic RAG的最简单方式。地址:https://github.com/ragapp/ragapp

15、TurboRAG,通过预计算的KV缓存加速检索增强生成,适用于分块文本。地址:https://github.com/MooreThreads/TurboRAG

16、TEN,实时多模态AI代理框架。地址:https://github.com/TEN-framework/ten_framework

17、AutoRAG,RAG AutoML工具。地址:https://github.com/Marker-Inc-Korea/AutoRAG

二、七个GraphRAG框架

GraphRAG框架这是流行于微软的GraphRAG,然后后续出现了很多轻量化的改进版本,如LightRAG、nano-GraphRAG,也有一些具有特色的版本,如KAG,其核心思想是在原先传统RAG的基础上,增加实体、社区、chunk之间的关联,或者原有KG的知识,从而提升召回和准确性。

这里总结7个:

1、LightRAG,简单快速的Graphrag检索增强生成。地址:https://github.com/HKUDS/LightRAG

2、GraphRAG-Ollama-UI,使用Ollama的GraphRAG,带有Gradio UI和额外功能。地址:https://github.com/severian42/GraphRAG-Ollama-UI

3、microsoft-GraphRAG,一个模块化的基于图的检索增强生成(RAG)系统。地址:https://github.com/microsoft/graphrag

4、nano-GraphRAG,一个简单、易于修改的GraphRAG实现。地址:https://github.com/gusye1234/nano-graphrag

5、KAG,基于OpenSPG引擎的知识增强生成框架,用于构建知识增强的严格决策制定和信息检索知识服务。地址:https://github.com/OpenSPG/KAG

6、Fast-GraphRAG,GraphRAG的轻量化版本。地址:https://github.com/circlemind-ai/fast-graphrag

7、Tiny-GraphRAG,一个小巧的GraphRAG实现。地址:https://github.com/limafang/tiny-graphrag


三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值