YOLOv13|损失函数优化篇:WIOU 考虑几何相似性,更关注如何在训练过程中合理分配注意力-包源码


在这里插入图片描述

深度学习中WIoU的原理详解

1. 引言

在目标检测领域边界框回归损失函数的发展历程中,从IoU到GIoU、DIoU、CIoU、SIoU、EIoU,研究人员不断探索更有效的相似性度量方法。Wise IoU(WIoU)是这一发展脉络中的最新成果,其核心创新在于引入了动态非单调聚焦机制(Dynamic Non-Monotonic Focusing Mechanism),通过智能调节损失函数对不同质量样本的关注程度,实现了更高效的边界框回归。

WIoU的设计理念突破了传统IoU变体的思维框架,不仅考虑几何相似性,更关注如何在训练过程中合理分配注意力。这种"智慧"体现在其能够根据样本的回归质量动态调整损失权重,为高质量样本提供更多梯度信息,同时避免低质量样本的负面影响。
在这里插入图片描述

2. 现有IoU变体的局限性

2.1 训练样本质量不均衡问题

在目标检测的实际训练过程中,存在严重的样本质量不均衡现象:

高质量样本稀少
大部分预

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导YOLO君教程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值