改进yolov8|损失函数改进:EfficiCIoU-Loss

本文介绍了EfficiCIoU-Loss的原理,它是EfficientDet中CloU和GIoU的结合。通过改进核心代码,将此损失函数应用于YOLOv8,以提升目标检测的性能。文章提供了详细的改进过程和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。
和我一起来改进yolov8变身计算机大牛吧!
本文中的论文笔记都是刘姐亲自整理,原创整理哦~

EfficiCIoU-Loss简介

简介

  • EfficiCIoU-Loss结合了EfficientDet中提出的CloU和GIoU
  • 计算公式:
    在这里插入图片描述

改进过程

核心代码

def bbox_effciou(box1, box2, xywh
### 关于CLOU损失函数 CLOU(Complete Loss of Union)是一种改进型的边界框回归损失函数,旨在解决传统IoU类损失函数在预测框与真实框完全分离时梯度消失的问题。其设计灵感来源于CIoU和其他变体,通过引入额外的距离惩罚项来增强模型的学习能力。 #### CLOU损失函数的核心概念 CLOU不仅考虑了预测框和真实框之间的重叠区域,还加入了中心点距离以及宽高比例因子的影响。这使得即使在两框完全没有交集的情况下,仍然可以提供有效的梯度信号用于优化[^3]。 #### 实现代码示例 以下是基于PyTorch实现的一个简单版本的CLOU损失函数: ```python import torch def clou_loss(pred_boxes, target_boxes, eps=1e-7): """ 计算CLOU (Complete Loss Of Union) 损失函数 参数: pred_boxes: 预测框张量,形状为[N, 4],格式为中心坐标(x,y)加宽度高度(w,h) target_boxes: 真实框张量,形状为[N, 4],格式同上 eps: 数值稳定性参数 返回: 平均CLOU损失值 """ # 转换到左上角右下角表示形式 x1p, y1p, w_p, h_p = pred_boxes[:, 0], pred_boxes[:, 1], pred_boxes[:, 2], pred_boxes[:, 3] x1t, y1t, w_t, h_t = target_boxes[:, 0], target_boxes[:, 1], target_boxes[:, 2], target_boxes[:, 3] x2p, y2p = x1p + w_p, y1p + h_p x2t, y2t = x1t + w_t, y1t + h_t # 计算交并面积 xi1, yi1 = torch.max(torch.stack([x1p, x1t]), dim=-1)[0], \ torch.max(torch.stack([y1p, y1t]), dim=-1)[0] xi2, yi2 = torch.min(torch.stack([x2p, x2t]), dim=-1)[0], \ torch.min(torch.stack([y2p, y2t]), dim=-1)[0] inter_area = torch.clamp(xi2 - xi1, min=0.) * torch.clamp(yi2 - yi1, min=0.) union_area = w_p * h_p + w_t * h_t - inter_area + eps iou = inter_area / union_area # 中心点距离平方 center_distance_squared = ((x1p + w_p / 2 - (x1t + w_t / 2)) ** 2 + (y1p + h_p / 2 - (y1t + h_t / 2)) ** 2) # 对角线长度平方 diagonal_length_squared = ((torch.max(torch.stack([x2p, x2t])) - torch.min(torch.stack([x1p, x1t]))) ** 2 + \ ((torch.max(torch.stack([y2p, y2t])) - torch.min(torch.stack([y1p, y1t]))) ** 2 + eps # 完整性约束项 v = (4.0 / (torch.pi ** 2)) * torch.pow((torch.atan(w_t / (h_t + eps)) - torch.atan(w_p / (h_p + eps))), 2) alpha = v / (1 - iou + v + eps) clou = 1 - iou + (center_distance_squared / diagonal_length_squared) + alpha * v return clou.mean() ``` 此代码实现了完整的CLOU损失计算逻辑,并兼容无重叠情况下的梯度传播需求。 #### 如何集成至YOLOv8项目中? 为了将CLOU损失函数应用到YOLOv8框架中,需按照以下方式操作: 1. 修改`ultralytics/utils/metrics.py`中的`bbox_iou()`函数以支持自定义选项。 2. 将上述CLOU损失函数添加到`ultralytics/utils/loss.py`文件中。 3. 更新训练配置文件或脚本,指定新损失函数作为边界框回归的目标函数[^2]。 #### 注意事项 - 在实际部署前应充分测试该损失函数的表现效果及其对整体性能的影响。 - 可能需要调整学习率或其他超参数以适应新增的复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值