0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
在机器学习强基计划4-4:详解半朴素贝叶斯分类AODE原理(附Python实现)中,我们向朴素贝叶斯模型里引入了独依赖假设,AODE的基本思路是考虑每个属性与其他属性间的依赖性,做加权平均,而本文介绍的TAN则是采用另一种思路。
1 条件互信息
在机器学习强基计划2-1:一文总结熵——交叉熵、相对熵、互信息(附例题分析)中,我们介绍了互信息的概念,互信息(Mutual I