路径规划 | 图解动态A*(D*)算法(附ROS C++/Python/Matlab仿真)

本文介绍了动态A* (D*) 算法,一种适用于静态和动态环境的路径规划算法。内容包括D*算法的概念、核心思想、流程图,以及在ROS中用C++和Python的实现。通过实例和仿真展示了D*如何应对环境变化进行路径重规划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 什么是D*算法?

动态A*(Dynamic A*, D*)算法是一种增量式路径规划算法,与A*算法相比,它最大的优势是可以同时兼容静态环境和存在未知动态变化的场景,曾被美国用于火星探测器寻路。如果还不了解A*算法,可以看路径规划 | 图解A*、Dijkstra、GBFS算法的异同(附C++/P

### 动态A*路径规划算法ROS中的实现 #### 背景介绍 动态A*(Dynamic A* Lite 或者 D* Lite)是一种用于实时环境下的路径重规划算法,在机器人导航领域应用广泛。该算法能够在环境中存在未知障碍物的情况下,有效地找到从起点到终点的最佳路径[^1]。 #### 实现概述 为了实现在ROS环境下运行D* Lite或类似的动态A*算法,通常需要创建一个ROS包来封装此功能。这个包会订阅来自激光雷达或其他传感器的数据以更新地图信息,并发布计算得到的新路径给移动平台执行。此外还需要配置launch文件以便启动所有必要的节点和服务。 #### 关键组件说明 - **Costmap_2d**: 使用costmap_2d库可以方便地处理二维栅格地图上的代价函数表示法,这对于支持任何基于网格的地图都是至关重要的。 - **Move_base**: move_base是一个集成多种导航模块的核心框架,它能够接收全局目标位置并调用局部避障器生成安全轨迹;对于自定义路径规划器来说,则可以通过插件机制将其接入move_base体系内工作。 - **Custom Planner Node (C++)** 下面给出了一段简化版的代码片段作为例子展示如何编写这样一个定制化的路径规划节点: ```cpp #include <ros/ros.h> // ...其他头文件... class DynamicPlanner { public: void initialize() { /* 初始化逻辑 */ } std::vector<geometry_msgs::PoseStamped> makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal) { // 这里放置具体的D* Lite/A*算法实现... return path; } private: nav_core::BaseLocalPlanner* local_planner_; }; int main(int argc, char** argv){ ros::init(argc, argv, "dynamic_astar_node"); DynamicPlanner planner; planner.initialize(); while(ros::ok()){ // 主循环体... } } ``` 上述代码展示了基本结构,实际开发过程中还需考虑更多细节如参数服务器设置、TF变换监听等功能接口的设计。
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值