经过了考试月,终于有时间写下代码了。但是发现手生了好多,很多东西都忘记了,于是就在kaggle中那个Digit Recognizer模块下,用CNN写了个简单的网络来熟悉下代码。
CNN之前在DQN中有写到,用它来进行特征提取。它在图片识别,以及对图片采样时作用很大。
先是从kaggle中下载了测试集和训练集,将它们放到项目中。
先将测试集和训练集的数据进行处理。
# -------------训练集处理-----------------
df = pd.read_csv('./data/train.csv')
df = df[:40000]
df_matrix = df.as_matrix().astype(float)
label = df_matrix[:, 0]
label = np.array(label)[:, np.newaxis]
x = df_matrix[:, 1:]
# 输入标签的OneHot转换 exg:[[0 0 0 1 0],[1 0 0 0 0]
ohe = OneHotEncoder()
ohe.fit(label)
label = ohe.fit_transform(label).toarray()
# 输入x的归一化 exg:[[0.1 0.2 0.3],[0.4 0.5 0.6]]
mm = MinMaxScaler()
mm.fit(x)
x = mm.fit_transform(x)
# -----------------测试集处理---------------
# len 28000
df_test = pd.read_csv('./data/test.csv')
df_test_matrix = df_test.as_matrix().astype(float)
test_input = df_test_matrix[:, :]
mm = MinMaxScaler()
mm.fit(test_input)
test_input = mm.fit_transform(test_input)
接下来进行模型设计,在进行卷积操作的时候用到的是tf.layers.conv2d和tf.layers.max_pooling2d来分别进行卷积和最大化池化操作。
tensorflow封装的这两个方法在使用时都比较直观。在下面的代码中,一些重要的参数加了注释。
其中28×28的图片经过第一次的卷积操作后还是28×28,第一次池化后变为14×14,第二次卷积后为14×14,第二次池化后变为7×7,最后得到了64张 7×7的平面。
卷积神经网络后接了两个全连接的神经网络。使用的是tf.layers.dense的方法。
x_input = tf.placeholder(tf.float32, [None, 784])
label_input = tf.placeholder(tf.float32, [None, 10])
# 改变x的格式转为4D的向量[batch, in_height, in_width, in_channel]
# in_channel彩色通道
x_image = tf.reshape(x_input, [-1, 28, 28, 1])
conv1 = tf.layers.conv2d(
inputs=x_image,
filters=32, # 卷积核的数量
kernel_size=[5,5], # 采样窗口的大小
padding='same', # 边界进行填充0
activation=tf.nn.relu,
strides=(1,1) # 上下移动的步长是1
)
pool1 = tf.layers.max_pooling2d(
inputs=conv1,
pool_size=[2,2], # 池化的窗口大小
strides=2
)
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding='same',
activation=tf.nn.relu,
strides=(1,1)
)
pool2 = tf.layers.max_pooling2d(
inputs=conv2,
pool_size=[2,2],
strides=2
)
pool2_flat = tf.reshape(pool2, [-1, 7*7*64])
# 全连接层的构建
l1 = tf.layers.dense(
inputs=pool2_flat,
units=1024,
activation=tf.nn.relu
)
l2 = tf.layers.dense(
inputs=l1,
units=10,
activation=tf.nn.softmax
)
接下来是构造Loss函数以及参数训练。
因为最后的输出层使用的是softmax函数,所以Loss函数使用tf.nn.softmax_cross_entropy_with_logits(),优化器使用AdamOptimizer()。
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=label_input, logits=l2))
train = tf.train.AdamOptimizer(1e-4).minimize(loss)
label_prediction = tf.argmax(l2, axis=1)
correct_prediction = tf.equal(tf.argmax(l2, axis=1), tf.argmax(label_input, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
最后创建会话。
其中需要注意的是在进行测试的时候,测试数据也要分batch进行训练,因为测试数据有28000条,如果直接丢进模型的话会容易内存不足而报Process finished with exit code -1073740791 (0xC0000409)的错误。
with tf.Session() as sess:
sess.run(init)
batch_total = 200
batch_size = 40
for epoch in range(18):
for i in range(batch_total):
x_batch = x[i*batch_size:(i+1)*batch_size, :]
label_batch = label[i*batch_size:(i+1)*batch_size, :]
sess.run(train, feed_dict={x_input:x_batch, label_input:label_batch})
acc = sess.run(accuracy, feed_dict={x_input:x[:4000,:], label_input:label[:4000,:]})
print('epoch'+str(epoch)+':'+str(acc))
result = []
batch_size = 200
batch_test_total = len(test_input) // batch_size
for i in range(batch_test_total):
x_batch = test_input[i*batch_size:(i+1)*batch_size, :]
list = sess.run(label_prediction, feed_dict={x_input: x_batch})
result.extend(list)
result_df = pd.DataFrame({'ImageId': range(1, len(result) + 1), 'Label': result})
result_df.to_csv('./data/predictionOfcnn.csv', index=False)
最后就可以把生成的csv文件直接提交到kaggle上了。