X射线成像基本原理

本文详细讨论了X射线在物质中的衰减过程,包括三种相互作用(弹性散射、康普顿散射和光电效应),以及如何通过电子密度和有效原子序数来描述这种衰减。还介绍了混合物的有效原子序数计算方法,引用了Hunemohr2013和Saito2012的相关研究成果。
摘要由CSDN通过智能技术生成

科研笔记,不具备可读性。


1. X射线的衰减

I=I_0 e^{-n {}_a\sigma l}=I_0 e^{-l/\tau}

n单位体积内靶原子数量,_a\sigma原子有效碰撞截面,_e\sigma=Z\cdot {}_a\sigma

\mu=1/\tau=n _a\sigma=\rho{N_g} \cdot {}_e\sigma=\rho_e\cdot {}_{e}\sigma

N_g=N_AZ/A单位质量内的电子数量,\rho_e单位体积内的电子数量

HU=1000\frac{\mu-\mu_w}{\mu_w}=1000\left( \frac{\mu}{\mu_w}-1\right)

电子密度可以通过在两种不同能量下测量的线性衰减系数的加权相减来表示。


2. 三种相互作用

能量在1.022MeV以下(电子对效应的阈值)的光子与物质发生三种相互作用

(1)  elastic scattering (Rayleigh + Thomson scattering)

光子与内壳层电子的相干(coherent)散射。

The relative importance of Rayleigh scattering is seen to be fairly small.

瑞利散射截面 _a\sigma^{coh}\propto Z^2/(h\nu)^2

(2)inelastic scattering (Compton scattering)

光子与外壳层电子的非相干(incoherent)散射。

单个自由电子的散射截面由Klein-Nishina公式给出,用_e\sigma^{KN}表示。由于电子的结合能为0,it is important to remember that _e\sigma^{KN}\propto Z^0

_a\sigma^{incoh}=Z\cdot{}_e\sigma^{KN}

Compton散射质量衰减系数

\mu/\rho=N_g\cdot{}_e\sigma^{KN}\propto Z^0

(3)photonelectric effect

光电效应散射截面

_a\sigma^{ph}\cong k\frac{Z^n}{(h\nu)^m}

当光子的能量hν~100keV时,可以记 n = 4, m = 3。所以光电效应的质量衰减系数为

\mu/\rho\propto (Z/h\nu)^3

综上:

_a\sigma={}_a\sigma^{ph}+{}_a\sigma^{coh}+{}_a\sigma^{incoh}

在一定程度的准确性下,可以将其写成

_a\sigma(Z,E)=N_g\left \{ K^{ph}(E)\cdot Z^{m}+K^{coh}(E)\cdot Z^{n}+{}_e\sigma^{KN}(E)\cdot Z \right \}

\frac{\mu}{\rho}(Z,E)=N_g\left \{ K^{ph}(E)\cdot Z^{m-1}+K^{coh}(E)\cdot Z^{n-1}+{}_e\sigma^{KN}(E) \right \}

m和n通过拟合一定能量范围内的数据确定。


3. 混合规则

对于元素混合物(mixture, M)

N_g=N_A\sum_{i}^{}\frac{\omega_i Z_i}{A_i}=\sum_i N_g^i

\mu/\rho=\sum_i N_g^i\cdot{}_e\sigma_i=N_g\sum_i \lambda_i\cdot{}_e\sigma_i

\lambda_i=\frac{N_g^i}{N_g}=\frac{N_g^i}{\sum_i N_g^i}=\frac{\frac{\omega_i Z_i}{A_i}}{\sum_i \frac{\omega_i Z_i}{A_i}}

重点来了

\frac{\mu_M}{\rho}(Z,E)=N_g\left \{ K^{ph}(E)\cdot \widetilde{Z}^{m-1}+K^{coh}(E)\cdot \widehat{Z}^{n-1}+{}_e\sigma^{KN}(E) \right \}

\widetilde{Z}^{m-1}=\sum_i\lambda_iZ_i^{m-1} 

\widehat{Z}^{n-1}=\sum_i\lambda_iZ_i^{n-1}

\widetilde{Z}\widehat{Z}即为有效原子序数(effective atomic number, Zeff)。如果coherent的贡献很小,那么可以只用\widetilde{Z}表征这个混合物。The coherent cross-section is usually omitted, and the exponent m ranges from 4.0 to 5.0.

此外有效原子序数与能量的关系不大。


有关有效原子序数 Ref: Hunemohr 2013

In order to have the same photoelectric absorption for a mixture of atoms as for a hypothetical material with the same electron density and a certain effective atomic number

\mu(E)\approx a_1\rho_e f(E)+a_2\rho_e \frac{Z^n}{E^3} 

第二项即为光电效应,这个公式在Z大于Iodine(碘53)时不再适用。

\rho_eZ^n = \sum_i\rho_{e,i}Z_i^n

\rho_{e,i}=n_i\cdot Z_i (ni是i原子在单位体积的数量)

Z^n=\frac{\sum_i n_iZ_i^{n+1}}{\sum_in_iZ_i}

由此可以计算出电子体模插件的有效原子序数,这里n取3.1。以下为上式的进一步推导和代码

n_i=\rho_i\frac{N_A}{A_i}=\rho\cdot\omega_i\cdot\frac{N_A}{A_i}

Z=\left ( \frac{\sum_i\frac{\omega_i}{A_i}Z_i^{n+1}}{\sum_i\frac{\omega_i}{A_i}Z_i} \right )^{1/n}

clear
clc
close all

w = [9.06	72.3	2.25	16.27	0	0	0	0.13	0	0]; % Gammex Adipose
w = w./sum(w,2);

Z = [1	6	7	8	12	15	16	17	20	56];
A = [1.008	12.0107	14.007	15.999	24.305	30.97376	32.065	35.453	40.078	137.327];


tmp = sum(w./A.*Z.^(3.1+1))/sum(w./A.*Z);
result = tmp^(1/3.1);

result % 6.17 与 Hunemohr2013 Table.1 中的一致

记录一些相关推导公式和代码,Ref: Hunemohr 2013, saito2012

\frac{\rho_e}{\rho_{e,w}}=C_e\left ( \frac{HU_H}{1000}+1 \right )+(1-C_e)\left ( \frac{HU_L}{1000}+1 \right ) (Hunemohr 2013)

\rho_e=\frac{(1+\alpha)HU_H-\alpha HU_L}{1000}+1 (satio 2012)

这两个公式含义是相同的。Hunemohr从最基本的衰减系数模型(光电、康普顿分解)中得到了这个公式,而saito则直接发现了这个规律。其中 \alpha=C_e-1

fitType = fittype('Ce*x+(1-Ce)*y', ...
                  'coefficients', 'Ce', 'independent', {'x', 'y'}, ...
                  'dependent', 'z' ); 

f = fit([HU.H,HU.L],relativeED,fitType,'startpoint',1.5); % HU.H = HU_H/1000 + 1,同理HU.L

Z^n=\left ( \frac{\rho_e}{\rho_{e,w}} \right )^{-1}\left \{ d_e\left ( \frac{HU_H}{1000}+1 \right )+(Z_w^n-d_e)\left ( \frac{HU_L}{1000}+1 \right ) \right \}

water Zw = 7.45, n = 3.1

fitType = fittype( 'de*x+(7.45^3.1-de)*y', ...
        'coefficients', 'de', 'independent', {'x', 'y'}, ...
        'dependent', 'z' ); 

f = fit([HU.H,HU.L],relativeED.*Zeff.^3.1,fitType,'startpoint',1.5);

2023.8.11

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值