科研笔记,不具备可读性。
1. X射线的衰减
n单位体积内靶原子数量,原子有效碰撞截面,
单位质量内的电子数量,单位体积内的电子数量
电子密度可以通过在两种不同能量下测量的线性衰减系数的加权相减来表示。
2. 三种相互作用
能量在1.022MeV以下(电子对效应的阈值)的光子与物质发生三种相互作用
(1) elastic scattering (Rayleigh + Thomson scattering)
光子与内壳层电子的相干(coherent)散射。
The relative importance of Rayleigh scattering is seen to be fairly small.
瑞利散射截面
(2)inelastic scattering (Compton scattering)
光子与外壳层电子的非相干(incoherent)散射。
单个自由电子的散射截面由Klein-Nishina公式给出,用表示。由于电子的结合能为0,it is important to remember that 。
Compton散射质量衰减系数
(3)photonelectric effect
光电效应散射截面
当光子的能量hν~100keV时,可以记 n = 4, m = 3。所以光电效应的质量衰减系数为
综上:
在一定程度的准确性下,可以将其写成
m和n通过拟合一定能量范围内的数据确定。
3. 混合规则
对于元素混合物(mixture, M)
重点来了
和即为有效原子序数(effective atomic number, Zeff)。如果coherent的贡献很小,那么可以只用表征这个混合物。The coherent cross-section is usually omitted, and the exponent m ranges from 4.0 to 5.0.
此外有效原子序数与能量的关系不大。
有关有效原子序数 Ref: Hunemohr 2013
In order to have the same photoelectric absorption for a mixture of atoms as for a hypothetical material with the same electron density and a certain effective atomic number
第二项即为光电效应,这个公式在Z大于Iodine(碘53)时不再适用。
(ni是i原子在单位体积的数量)
由此可以计算出电子体模插件的有效原子序数,这里n取3.1。以下为上式的进一步推导和代码
clear
clc
close all
w = [9.06 72.3 2.25 16.27 0 0 0 0.13 0 0]; % Gammex Adipose
w = w./sum(w,2);
Z = [1 6 7 8 12 15 16 17 20 56];
A = [1.008 12.0107 14.007 15.999 24.305 30.97376 32.065 35.453 40.078 137.327];
tmp = sum(w./A.*Z.^(3.1+1))/sum(w./A.*Z);
result = tmp^(1/3.1);
result % 6.17 与 Hunemohr2013 Table.1 中的一致
记录一些相关推导公式和代码,Ref: Hunemohr 2013, saito2012
(Hunemohr 2013)
(satio 2012)
这两个公式含义是相同的。Hunemohr从最基本的衰减系数模型(光电、康普顿分解)中得到了这个公式,而saito则直接发现了这个规律。其中
fitType = fittype('Ce*x+(1-Ce)*y', ...
'coefficients', 'Ce', 'independent', {'x', 'y'}, ...
'dependent', 'z' );
f = fit([HU.H,HU.L],relativeED,fitType,'startpoint',1.5); % HU.H = HU_H/1000 + 1,同理HU.L
water Zw = 7.45, n = 3.1
fitType = fittype( 'de*x+(7.45^3.1-de)*y', ...
'coefficients', 'de', 'independent', {'x', 'y'}, ...
'dependent', 'z' );
f = fit([HU.H,HU.L],relativeED.*Zeff.^3.1,fitType,'startpoint',1.5);
2023.8.11