AlexNet层级分析(涉及:卷积核操作下下层网络特征图size计算;对通道和卷积核尺寸及通道前层feature map和卷积核的运算关系的解释)

先盗一图,摘自ImageNet Classification with Deep Convolutional Neural Networks(Hinton)


注:看到这个结构,可以得到以下结论(以2、3层为例)

1、第三层有128*2=256个通道,第二层有48*2=96个通道。每个通道内包含一张前层经卷积核卷积的的feature map,共256张和96张。而由第二层到第三层,第三层通道数(或feature map数)与卷积核相同,卷积核有256个。

2、由第二层的5*5立方体知,其向下映射的下层卷积核是 5*5*channel的立体卷积核,每一个第三层的feature map,都是通过对应该通道的卷积核与第二层相应通道进行卷积得到的。




由作者的原文可知,AlexNet模型在训练时使用了两个GPU,所以就出现了一些参数为两个GPU共享,一些参数是GPU独享。在建立此训练模型前,先分析各层的参数关系。

AlexNet模型共有5个卷积层,3个全连接层,前两个卷积层和第五个卷积层有pool池化层,其他两个卷积层没有池化。

第一卷积层:

由AlexNet架构图,第一卷积层的卷积核有96个(两个GPU各用48个),卷积核的尺度为11*11*3(3为RGB通道数),(注意:卷积核个数和卷积核尺度两个概念,卷积核尺度数描述卷积核的大小)步长stride为4。生成的卷积特征图单元数为55*55*48*2,每个特征图尺度为55*55,由此可知输入图像尺度为227*227(55(单向尺度)*4(步长) + (11(卷积核尺度)-4(步长)) = 227)。因此输入图像单元数为227*227*3*1(1为GPU数)

(对通道和卷积核尺寸及通道前层feature map和卷积核的运算关系的解释:


第一池化层:

输入单个特征图尺度为55*55,池化尺度3*3,步长为2,输出池化特征图尺度为27*27((55(单向尺度)-3(池化尺度))/2(步长)+1 = 27)。特征图单元数为27*27*48*2.

第二卷积层:

由AlexNet架构图,卷积核有256个(两个GPU各128个,同时各作用于各GPU内的第一池化层的输出),卷积核尺度5*5*3,步长为1,生成卷积特征图单元数为27*27*128*2,每个特征图尺度为27*27,由此计算输入特征图尺度为31*31(27(单向尺度)*1(步长)+(5(卷积核尺度)-1(步长))= 31)。因此输入特征图单元数为31*31*96。

第二池化层:

输入单个特征图尺度为27*27,池化尺度3*3,步长为2,输出池化特征图尺度为13*13((27(单向尺度)-3(池化尺度))/2(步长)+ 1 = 13)。特征图单元数为13*13*128*2.

第三卷积层:

由AlexNet架构图,卷积核有384个(两个GPU各192个,同时需要共享各自GPU第二池化层的输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*256。

第四卷积层:

由AlexNet架构图,卷积核有384个(两个GPU各192个,同时不共享各自GPU内的第三卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。

第五卷积层:

由AlexNet架构图,卷积核有256个(两个GPU各128个,同时不共享各自GPU内的第四卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*128*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。

第五池化层:

输入单个特征图尺度13*13,池化尺度3*3,步长为2,输出池化特征图尺度为6*6((13(单向尺度)-3(池化尺度))/2(步长)+1 = 6)。特征图单元数为6*6*256.

第一全连接层:

输入特征图单元数为6*6*256,输出特征图单元数为4096,全连接参数个数为6*6*256*4096.

第二全连接层:

输入特征图单元数4096,输出特征图单元数为4096,全连接参数个数为4096*4096.

第三全连接层:

即输出层,输入特征图单元数为4096,输出特征图单元数为1000,全连接参数个数为4096*1000.

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 双通道四核卷积神经网络是一个深度学习模型,由多个网络层组成。下面是它不同网络层的描述: 1. 输入层:该层接受输入的原始据,并将其转换为神经网络可处理的格式。 2. 卷积层1:该层使用四个核来提取特征。该层的输出是一个包含多个特征的张量。 3. 池化层1:该层对卷积层1的输出进行下采样,以减少特征的大小。这有助于降低后续层的计算复杂度和内存消耗。 4. 卷积层2:该层使用四个核来进一步提取特征。该层的输出是一个包含多个特征的张量。 5. 池化层2:该层对卷积层2的输出进行下采样,以进一步减小特征的大小。 6. 全连接层1:该层将池化层2的输出展平,并将其输入到一个具有多个神经元的全连接层中。该层的输出是一个向量,其中每个元素对应于一个类别的分。 7. Dropout层:该层随机地将一些神经元的输出设置为零,以减少模型的过拟合。 8. 全连接层2:该层接受Dropout层的输出,并将其输入到一个具有多个神经元的全连接层中。该层的输出是一个向量,其中每个元素对应于一个类别的分。 9. Softmax层:该层将全连接层2的输出转换为一个概率分布,以便可以进行分类。 ### 回答2: 双通道四核卷积神经网络由多个不同的网络层组成,每个网络层都具有特定的功能和特征提取能力。 1. 输入层:输入层是将原始据输入到神经网络中的第一个层级,通常是像或其他类型的据。输入层的主要目的是将原始据转换为神经网络可处理的格式。 2. 卷积层:卷积层是神经网络中最重要的层之一。该层通过使用多个卷积核对输入据进行卷积操作,从而提取局部特征。每个卷积核都会生成一个特定的特征,用于表示输入据的不同特征。 3. 激活层:激活层被添加在卷积层之后,其作用是引入非线性变换。常用的激活函有ReLU、Sigmoid和Tanh等,可将卷积层输出的结果转换为更具有表达能力的形式。 4. 池化层:池化层通常紧接在激活层之后。该层的主要功能是减小特征尺寸,同时保留最重要的特征。常见的池化方式有最大池化和平均池化。 5. 全连接层:在经过卷积和池化层后,全连接层会将上一层的输出连接到神经网络的输出层。该层中每个神经元都与上一层的所有神经元相连接,其目的是用于分类和预测任务。 6. 输出层:输出层是神经网络的最后一层,其根据任务的要定义输出的形式和量。对于分类任务,输出层通常使用softmax函将神经网络预测的结果转化为概率分布。 双通道四核卷积神经网络结构的每个网络层都起着不同的作用,通过这些层的组合和堆叠,神经网络可以提取输入据中的各种复杂特征,并用于不同的任务和应用中。具体的网络结构可以根据实际需进行调整和优化。 ### 回答3: 双通道四核卷积神经网络结构通常包含输入层、卷积层、池化层、全连接层和输出层。 输入层:双通道四核卷积神经网络的输入层用于接收输入据,可以是像、文本或其他形式的据。输入层负责将输入据传递给下一层进行处理。 卷积层:卷积层是双通道四核卷积神经网络的核心层之一,使用多个卷积核对输入据进行卷积操作。每个卷积核负责提取输入据的特征,并产生一张特征。双通道表示每个卷积核在两个通道上进行卷积操作并生成两张特征。 池化层:池化层用于缩小卷积层输出的特征尺寸,并减少参量。常用的池化操作包括最大池化和平均池化。池化层能够保留特征中的主要信息,并减少计算量。 全连接层:全连接层将池化层的输出特征展平为一维向量,并连接到一个或多个全连接神经元上。全连接层提供了神经网络的非线性处理能力,能够学习复杂的特征组合。 输出层:输出层是神经网络的最后一层,通常使用softmax函对全连接层的输出进行处理,将输出值转化为概率分布。输出层的神经元量通常与待分类的类别量相等。 双通道四核卷积神经网络结构中,卷积层和池化层通常会通过交替堆叠的方式来提取并降维输入据的特征信息,全连接层则用于将提取到的特征映射到具体的分类结果。网络层的深度和参量通常会根据任务的复杂性进行调整,以权衡模型的复杂性和性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值