数据分析:小样本的置换检验Permutation Test

在这里插入图片描述

介绍

置换检验是一种非参数统计方法,它不依赖于数据的分布形态,因此特别适用于小样本数据集,尤其是当样本总体分布未知或不符合传统参数检验的假设条件时。置换检验的基本思想是通过随机置换样本来评估观察到的统计量是否显著不同于随机情况下的预期值。最初真正认识置换检验是从PERMANOVA分析开始的,PERMANOVA的原理是:

  1. 原始统计量的获取: 首先计算组间距离的平方和与组内距离的平方和之间的差值。这个差值在统计学中类似于F分布统计量,用于评估组间差异的显著性。
  2. 随机置换样本: 接下来,通过随机抽取样本并重新分组,重复计算上述类似F分布的统计量。这个过程需要进行多次,例如1000次,以模拟在随机条件下可能得到的各种统计量值。
  3. 统计量分布的构建与评估: 将第二步中重复计算得到的1000个统计量值组成一个分布。然后,观察原始统计量值在这个分布中的位置。如果在显著性水平(例如0.05)的两端,即表示原始统计量值在随机情况下出现的概率较低,从而可以认为存在显著差异&#x
采用置换检验(permutation test)是一种非参数统计方法,用于判断两个或多个样本之间是否存在显著差异。在该检验中,数据中的观察值会被随机重排,通过计算重排后的数据集中的某个统计量,进而判断原始数据集中的统计量是否显著。 在重复采样次数为10000的情况下,可以进行如下步骤进行置换检验: 1. 收集要比较的两个或多个样本的数据,并进行必要的预处理和清理。 2. 设定显著性水平(例如0.05),即用来判断差异是否显著的临界值。 3. 对原始数据进行重复采样10000次。每次采样时,将两个或多个样本的数据随机重排,得到新的数据集。 4. 在每次重排后的数据中,计算感兴趣的统计量。例如,可以计算两个样本均值的差异,或者进行方差分析等。 5. 将这10000次重排后的数据集中的统计量按大小排序。 6. 找到在排序后的重排统计量中,与原始数据中的统计量相同或更极端的值所占的比例。这个比例即为置换检验的p值。如果该p值小于设定的显著性水平,则可以认为两个或多个样本之间存在显著差异。 需要注意的是,采用置换检验(permutation test)时,若重复采样次数越多,得到的结果越准确,但也需要更长的计算时间。因此,根据具体实际情况来设定重复采样次数。在本题中,重复采样次数为10000次,可以获得较为可靠的置换检验结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值