介绍
置换检验是一种非参数统计方法,它不依赖于数据的分布形态,因此特别适用于小样本数据集,尤其是当样本总体分布未知或不符合传统参数检验的假设条件时。置换检验的基本思想是通过随机置换样本来评估观察到的统计量是否显著不同于随机情况下的预期值。最初真正认识置换检验是从PERMANOVA分析开始的,PERMANOVA的原理是:
- 原始统计量的获取: 首先计算组间距离的平方和与组内距离的平方和之间的差值。这个差值在统计学中类似于F分布统计量,用于评估组间差异的显著性。
- 随机置换样本: 接下来,通过随机抽取样本并重新分组,重复计算上述类似F分布的统计量。这个过程需要进行多次,例如1000次,以模拟在随机条件下可能得到的各种统计量值。
- 统计量分布的构建与评估: 将第二步中重复计算得到的1000个统计量值组成一个分布。然后,观察原始统计量值在这个分布中的位置。如果在显著性水平(例如0.05)的两端,即表示原始统计量值在随机情况下出现的概率较低,从而可以认为存在显著差异&#x