一阶隐式微分方程(上)

内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


本篇笔记主要讨论
y = f ( x , y ′ ) , x = f ( y , y ′ ) y=f(x,y'),x=f(y,y') y=f(x,y),x=f(y,y)

即可以解出 y y y x x x 的方程


先讨论形如

y = f ( x , y ′ ) (1) y=f(x,y')\tag{1} y=f(x,y)(1)

的方程,这里假设函数 f ( x , y ′ ) f(x,y') f(x,y) 有连续的偏导数

y ′ = p y'=p y=p 则方程变为 f ( x , p ) f(x,p) f(x,p) ,再将两边对 x x x 求偏导,得

p = ∂ f ∂ x + ∂ f ∂ p d p d x (2) p=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}x}\tag{2} p=xf+pfdxdp(2)

则方程变为关于 x , p x,p x,p 的一阶微分方程,可按照之前的方法求解

  1. ( 2 ) (2) (2) 的通解为

p = φ ( x , c ) p=\varphi(x,c) p=φ(x,c)

将它带入 ( 1 ) (1) (1) ,得原方程通解

y = f ( x , φ ( x , c ) ) y=f(x,\varphi(x,c)) y=f(x,φ(x,c))

  1. ( 2 ) (2) (2) 的通解为

x = ψ ( p , c ) x=\psi(p,c) x=ψ(p,c)

则原方程的通解为参数方程形式

{ x = ψ ( p , c ) y = f ( ψ ( p , c ) , p ) \begin{cases} x=\psi(p,c)\\ y=f(\psi(p,c),p) \end{cases} {x=ψ(p,c)y=f(ψ(p,c),p)

  1. ( 2 ) (2) (2) 的通解为

Φ ( x , p , c ) = 0 \Phi(x,p,c)=0 Φ(x,p,c)=0

也是参数方程形式

{ Φ ( x , p , c ) = 0 y = f ( x , p ) \begin{cases} \Phi(x,p,c)=0\\ y=f(x,p) \end{cases} {Φ(x,p,c)=0y=f(x,p)


解方程

( d y d x ) 3 + 2 x d y d x − y = 0 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 +2x\frac{\mathrm{d}y}{\mathrm{d}x}-y=0 (dxdy)3+2xdxdyy=0

p = d y d x p=\frac{\mathrm{d}y}{\mathrm{d}x} p=dxdy ,得

y = p 3 + 2 x p y=p^3+2xp y=p3+2xp

两边对 x x x 求导

p = 3 p 2 d p d x + 2 x d p d x + 2 p p=3p^2\frac{\mathrm{d}p}{\mathrm{d}x} +2x\frac{\mathrm{d}p}{\mathrm{d}x}+2p p=3p2dxdp+2xdxdp+2p

( 3 p 2 + 2 x ) d p + p d x = 0 (3p^2+2x)\mathrm{d}p+p\mathrm{d}x=0 (3p2+2x)dp+pdx=0

这个方程可化为恰当微分方程

p ≠ 0 p\neq0 p=0 时,上式乘 p p p ,化为

( 3 p 3 + 2 x p ) d p + p 2 d x = 0 (3p^3+2xp)\mathrm{d}p+p^2\mathrm{d}x=0 (3p3+2xp)dp+p2dx=0

积分得

3 4 p 4 + x p 2 = c \frac{3}{4}p^4+xp^2=c 43p4+xp2=c

解出 x x x

x = c − 3 4 p 4 p 2 x=\frac{c-\frac{3}{4}p^4}{p^2} x=p2c43p4

带入原方程

y = 2 c p − p 3 2 y=\frac{2c}{p}-\frac{p^3}{2} y=p2c2p3

综上

{ x = c − 3 4 p 4 p 2 y = 2 c p − p 3 2 \begin{cases} x=\frac{c-\frac{3}{4}p^4}{p^2}\\ y=\frac{2c}{p}-\frac{p^3}{2} \end{cases} {x=p2c43p4y=p2c2p3

此外,当 p = 0 p=0 p=0 时,还有解 y = 0 y=0 y=0


形如

x = f ( y , y ′ ) x=f(y,y') x=f(y,y)

的方程的求解也类似

y ′ = p y'=p y=p ,两边对 y y y 求导,得

1 p = ∂ f ∂ y + ∂ f ∂ p d p d y \frac{1}{p}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}y} p1=yf+pfdydp

再按前几节的方法求解,若解为

Φ ( y , p , c ) = 0 \Phi(y,p,c)=0 Φ(y,p,c)=0

则原方程的通解为

{ x = f ( y , p ) Φ ( y , p , c ) = 0 \begin{cases} x=f(y,p)\\ \Phi(y,p,c)=0 \end{cases} {x=f(y,p)Φ(y,p,c)=0

MATLAB可以用于求解一阶微分方程。根据引用,MATLAB可以求解三种类型的一阶微分方程:显式常微分方程、线性隐式微分方程和完全隐式微分方程。对于显式常微分方程,可以直接给出解析解。对于线性隐式微分方程和完全隐式微分方程,可以利用数值方法进行求解。 对于线性隐式微分方程和完全隐式微分方程,可以使用MATLAB中的ode45函数进行求解。这个函数采用常微分方程的初始条件和微分方程的表达式作为输入,并返回方程的数值解。ode45函数使用的是龙格-库塔法进行数值求解,可以得到较高的精度。 另外,根据引用,如果已知具体的微分方程表达式和边界条件,可以使用MATLAB的ode45函数或其他适用的函数来求解一阶微分方程。 综上所述,MATLAB提供了丰富的工具和函数来求解一阶微分方程,可以根据具体的问题选择合适的函数进行求解。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [MATLAB-常微分方程求解](https://blog.csdn.net/weixin_56691527/article/details/128581996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值