积分因子(恰当微分方程续)

内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


(把非恰当方程化为恰当微分方程——积分因子)


定义

如果存在连续可微函数 μ ( x , y ) ≠ 0 \mu(x,y)\neq0 μ(x,y)=0 ,使得

μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x,y)M(x,y)\mathrm{d}x+ \mu(x,y)N(x,y)\mathrm{d}y=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0

为一恰当微分方程,即存在函数 μ ( x , y ) \mu(x,y) μ(x,y) ,使得

μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = d u ( x , y ) \mu(x,y)M(x,y)\mathrm{d}x+ \mu(x,y)N(x,y)\mathrm{d}y=\mathrm{d}u(x,y) μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=du(x,y)

则称 μ ( x , y ) \mu(x,y) μ(x,y) 为方程

M ( x , y ) d x + N ( x , y ) d y = 0 (1) M(x,y)\mathrm{d}x+ N(x,y)\mathrm{d}y=0\tag{1} M(x,y)dx+N(x,y)dy=0(1)

的积分因子


推导

根据恰当微分方程的判定,得

∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x M ∂ μ ∂ y + μ ∂ M ∂ y = N ∂ μ ∂ x + μ ∂ N ∂ x N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ \begin{align*} \frac{\partial(\mu M)}{\partial y}&=\frac{\partial(\mu N)}{\partial x}\\ M\frac{\partial\mu}{\partial y}+\mu\frac{\partial M}{\partial y}&= N\frac{\partial\mu}{\partial x}+\mu\frac{\partial N}{\partial x}\\ \tag{2}N\frac{\partial\mu}{\partial x}-M\frac{\partial\mu}{\partial y}&= \left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu \end{align*} y(μM)Myμ+μyMNxμMyμ=x(μN)=Nxμ+μxN=(yMxN)μ(2)

这是一个以 μ \mu μ 为未知函数的一阶线性偏微分方程。

在一般情况下,求解这个方程来得到积分因子 μ \mu μ 会比直接求解原方程更加困难。

但在若干特殊情况下,求 ( 2 ) (2) (2) 的一个特解还是容易的,所以 ( 2 ) (2) (2) 提供了寻找特殊积分因子的一个途径.


存在只与 x x x 有关的积分因子

∂ μ ∂ y = 0 \frac{\partial\mu}{\partial y}=0 yμ=0 ,这时方程 ( 2 ) (2) (2) 就变为

N ∂ μ ∂ x = ( ∂ M ∂ y − ∂ N ∂ x ) μ N\frac{\partial\mu}{\partial x}= \left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu Nxμ=(yMxN)μ

d μ μ = ∂ M ∂ y − ∂ N ∂ x N d x \frac{\mathrm{d}\mu}{\mu}= \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {N}\mathrm{d}x μdμ=NyMxNdx

∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {N}=\psi(x) NyMxN=ψ(x)

μ ( x ) = e ∫ ψ ( x ) d x \mu(x)=e^{\int\psi(x)\mathrm{d}x} μ(x)=eψ(x)dx

类似的,存在只与 y y y 有关的积分因子的充要条件为

∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {-M}=\varphi(y) MyMxN=φ(y)

此时积分因子为

μ ( y ) = e ∫ φ ( y ) d y \mu(y)=e^{\int\varphi(y)\mathrm{d}y} μ(y)=eφ(y)dy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值