内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社
(把非恰当方程化为恰当微分方程——积分因子)
定义
如果存在连续可微函数 μ ( x , y ) ≠ 0 \mu(x,y)\neq0 μ(x,y)=0 ,使得
μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x,y)M(x,y)\mathrm{d}x+ \mu(x,y)N(x,y)\mathrm{d}y=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0
为一恰当微分方程,即存在函数 μ ( x , y ) \mu(x,y) μ(x,y) ,使得
μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = d u ( x , y ) \mu(x,y)M(x,y)\mathrm{d}x+ \mu(x,y)N(x,y)\mathrm{d}y=\mathrm{d}u(x,y) μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=du(x,y)
则称 μ ( x , y ) \mu(x,y) μ(x,y) 为方程
M ( x , y ) d x + N ( x , y ) d y = 0 (1) M(x,y)\mathrm{d}x+ N(x,y)\mathrm{d}y=0\tag{1} M(x,y)dx+N(x,y)dy=0(1)
的积分因子
推导
根据恰当微分方程的判定,得
∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x M ∂ μ ∂ y + μ ∂ M ∂ y = N ∂ μ ∂ x + μ ∂ N ∂ x N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ \begin{align*} \frac{\partial(\mu M)}{\partial y}&=\frac{\partial(\mu N)}{\partial x}\\ M\frac{\partial\mu}{\partial y}+\mu\frac{\partial M}{\partial y}&= N\frac{\partial\mu}{\partial x}+\mu\frac{\partial N}{\partial x}\\ \tag{2}N\frac{\partial\mu}{\partial x}-M\frac{\partial\mu}{\partial y}&= \left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu \end{align*} ∂y∂(μM)M∂y∂μ+μ∂y∂MN∂x∂μ−M∂y∂μ=∂x∂(μN)=N∂x∂μ+μ∂x∂N=(∂y∂M−∂x∂N)μ(2)
这是一个以 μ \mu μ 为未知函数的一阶线性偏微分方程。
在一般情况下,求解这个方程来得到积分因子 μ \mu μ 会比直接求解原方程更加困难。
但在若干特殊情况下,求 ( 2 ) (2) (2) 的一个特解还是容易的,所以 ( 2 ) (2) (2) 提供了寻找特殊积分因子的一个途径.
存在只与 x x x 有关的积分因子
则 ∂ μ ∂ y = 0 \frac{\partial\mu}{\partial y}=0 ∂y∂μ=0 ,这时方程 ( 2 ) (2) (2) 就变为
N ∂ μ ∂ x = ( ∂ M ∂ y − ∂ N ∂ x ) μ N\frac{\partial\mu}{\partial x}= \left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu N∂x∂μ=(∂y∂M−∂x∂N)μ
即
d μ μ = ∂ M ∂ y − ∂ N ∂ x N d x \frac{\mathrm{d}\mu}{\mu}= \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {N}\mathrm{d}x μdμ=N∂y∂M−∂x∂Ndx
设
∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {N}=\psi(x) N∂y∂M−∂x∂N=ψ(x)
则
μ ( x ) = e ∫ ψ ( x ) d x \mu(x)=e^{\int\psi(x)\mathrm{d}x} μ(x)=e∫ψ(x)dx
类似的,存在只与 y y y 有关的积分因子的充要条件为
∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}} {-M}=\varphi(y) −M∂y∂M−∂x∂N=φ(y)
此时积分因子为
μ ( y ) = e ∫ φ ( y ) d y \mu(y)=e^{\int\varphi(y)\mathrm{d}y} μ(y)=e∫φ(y)dy