一阶隐式微分方程(下)

内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


不显含 y y y (或 x x x )的方程

求解

F ( x , y ′ ) = 0 F(x,y')=0 F(x,y)=0

y ′ = p y'=p y=p ,则

F ( x , p ) = 0 F(x,p)=0 F(x,p)=0

对应平面上的一条曲线,将曲线表示为参数方程的形式

{ x = φ ( t ) p = ψ ( t ) \begin{cases} x=\varphi(t)\\ p=\psi(t) \end{cases} {x=φ(t)p=ψ(t)

t t t 为参数,又因为 y ′ = p y'=p y=p ,得

d y d x = p d y = ψ ( t ) d x d y = ψ ( t ) d φ ( t ) d y = ψ ( t ) φ ′ ( t ) d t \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x}&=p\\ \mathrm{d}y&=\psi(t)\mathrm{d}x\\ \mathrm{d}y&=\psi(t)\mathrm{d}\varphi(t)\\ \mathrm{d}y&=\psi(t)\varphi'(t)\mathrm{d}t \end{align*} dxdydydydy=p=ψ(t)dx=ψ(t)dφ(t)=ψ(t)φ(t)dt

两边积分,得

y = ∫ ψ ( t ) φ ′ ( t ) d t + c y=\int\psi(t)\varphi'(t)\mathrm{d}t+c y=ψ(t)φ(t)dt+c

则原方程参数形式的通解为

{ x = φ ( t ) y = ∫ ψ ( t ) φ ′ ( t ) d t + c \begin{cases} x=\varphi(t)\\ y=\int\psi(t)\varphi'(t)\mathrm{d}t+c \end{cases} {x=φ(t)y=ψ(t)φ(t)dt+c

(不理解为什么要再 y ′ y' y t t t 中间加一个 p p p

(说到底还是通过 t t t x x x y ′ y' y 拆开好积分)


例4

x 3 + y ′ 3 − 3 x y ′ = 0 x^3+y'^3-3xy'=0 x3+y′33xy=0

y ′ = p = t x y'=p=tx y=p=tx ,代入方程得

(这里 ψ ( t ) \psi(t) ψ(t) 根据题目自己判断,硬要设成 t 2 x t^2x t2x x t \frac{x}{t} tx 应该也行,就是麻烦些)

x = 3 t 1 + t 3 x=\frac{3t}{1+t^3} x=1+t33t

所以

p = 3 t 2 1 + t 3 p=\frac{3t^2}{1+t^3} p=1+t33t2

所以

d y = 9 ( 1 − 2 t 3 ) t 2 ( 1 + t 3 ) 3 d t \mathrm{d}y=\frac{9(1-2t^3)t^2}{(1+t^3)^3}\mathrm{d}t dy=(1+t3)39(12t3)t2dt

积分得

y = 3 ( 1 + 4 t 3 ) 2 ( 1 + t 3 ) 2 + c y=\frac{3(1+4t^3)}{2(1+t^3)^2}+c y=2(1+t3)23(1+4t3)+c

故原方程的通解为

{ x = 3 t 1 + t 3 y = 3 ( 1 + 4 t 3 ) 2 ( 1 + t 3 ) 2 + c \begin{cases} x=\frac{3t}{1+t^3}\\ y=\frac{3(1+4t^3)}{2(1+t^3)^2}+c \end{cases} {x=1+t33ty=2(1+t3)23(1+4t3)+c


F ( y , y ′ ) = 0 F(y,y')=0 F(y,y)=0

的解法类似

y ′ = p y'=p y=p ,则

{ y = φ ( t ) p = ψ ( t ) \begin{cases} y=\varphi(t)\\ p=\psi(t) \end{cases} {y=φ(t)p=ψ(t)

d x = φ ′ ( t ) ψ ( t ) d t \mathrm{d}x=\frac{\varphi'(t)}{\psi(t)}\mathrm{d}t dx=ψ(t)φ(t)dt

通解

{ x = ∫ φ ′ ( t ) ψ ( t ) d t + c y = φ ( t ) \begin{cases} x=\int\frac{\varphi'(t)}{\psi(t)}\mathrm{d}t+c\\ y=\varphi(t) \end{cases} {x=ψ(t)φ(t)dt+cy=φ(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值