恰当微分方程

内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


定义

M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0 M(x,y)dx+N(x,y)dy=0

这里 M ( x , y ) , N ( x , y ) M(x,y),N(x,y) M(x,y),N(x,y) 在某矩形域内是 x , y x,y x,y 的连续函数,且具有连续的一阶偏导数.

如果上式的左端恰好是某个二元函数 u ( x , y ) u(x,y) u(x,y) 的全微分,即

M ( x , y ) d x + N ( x , y ) d y = d u ( x , y ) = ∂ u ∂ x d x + ∂ u ∂ y d y M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=\mathrm{d}u(x,y) =\frac{\partial u}{\partial x}\mathrm{d}x +\frac{\partial u}{\partial y}\mathrm{d}y M(x,y)dx+N(x,y)dy=du(x,y)=xudx+yudy

则该方程为恰当微分方程

恰当微分方程的通解显而易见

u ( x , y ) = c , c 为任意常数 u(x,y)=c,c为任意常数 u(x,y)=c,c为任意常数


判别恰当微分方程

充要条件

∂ M ∂ y = ∂ N ∂ x \frac{\partial M}{\partial y} =\frac{\partial N}{\partial x} yM=xN

(书上的证明过程似乎有点问题,就不写了)


已经确定是恰当微分方程,如何求 u ( x , y ) u(x,y) u(x,y)

1.待定函数法

(这个名字是我根据待定系数法自己取的)

大概过程就是

不是 M ( x , y ) = ∂ u ∂ x M(x,y)=\frac{\partial u}{\partial x} M(x,y)=xu

给他积回去

∫ M ( x , y ) d x \int M(x,y)\mathrm{d}x M(x,y)dx

就得到了与 x x x 有关的项(包括只与 x x x 有关的项以及与 x , y x,y x,y 都相关的项)

然后,我们设只与 y y y 有关的项为 φ ( y ) \varphi(y) φ(y) ,那么

u ( x , y ) = ∫ M ( x , y ) d x + φ ( y ) u(x,y)=\int M(x,y)\mathrm{d}x+\varphi(y) u(x,y)=M(x,y)dx+φ(y)

再然后, N = ∂ u ∂ y N=\frac{\partial u}{\partial y} N=yu,所以

N ( x , y ) = ∂ ∂ y ∫ M ( x , y ) d x + d φ ( y ) d y N(x,y)=\frac{\partial}{\partial y}\int M(x,y)\mathrm{d}x +\frac{\mathrm{d}\varphi(y)}{\mathrm{d}y} N(x,y)=yM(x,y)dx+dydφ(y)

对比等式左右两端确定 φ ( y ) \varphi(y) φ(y)

2.曲线积分法

M ( x , y ) , N ( x , y ) M(x,y),N(x,y) M(x,y),N(x,y) 在某单联通域 D D D 内是 x , y x,y x,y 的连续函数,且具有连续的一阶偏导数,则对 D D D 内任一按段光滑曲线 L L L ,曲线积分 ∫ L M ( x , y ) d x + N ( x , y ) d y \int_LM(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y LM(x,y)dx+N(x,y)dy 在区域 D D D 内积分与路径无关的充要条件是 ∂ M ∂ y = ∂ N ∂ x \frac{\partial M}{\partial y} =\frac{\partial N}{\partial x} yM=xN

所以可以利用从定点 A A A 到动点 B B B 的曲线积分来求 u ( x , y ) u(x,y) u(x,y)

u ( x , y ) = ∫ A B M ( x , y ) d x + N ( x , y ) d y u(x,y)=\int^B_AM(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y u(x,y)=ABM(x,y)dx+N(x,y)dy

3.分项组合

(没别的,就硬凑)

利用二元函数微分的特点,将恰当微分方程的各项"分项组合"凑成全微分形式

这种方法要求熟记一些简单二元函数的全微分,比如

在这里插入图片描述


解方程 ( 3 x 2 + 6 x y 2 ) d x + ( 6 x 2 y + 4 y 3 ) d y = 0 (3x^2+6xy^2)\mathrm{d}x+(6x^2y+4y^3)\mathrm{d}y=0 (3x2+6xy2)dx+(6x2y+4y3)dy=0

 解

∂ M ∂ y = 12 x y = ∂ N ∂ x \frac{\partial M}{\partial y}=12xy =\frac{\partial N}{\partial x} yM=12xy=xN

故方程是恰当微分方程

方法一

∫ M ( x , y ) d x = x 3 + 3 x 2 y 2 \int M(x,y)\mathrm{d}x=x^3+3x^2y^2 M(x,y)dx=x3+3x2y2

加上 φ ( y ) \varphi(y) φ(y)

u = x 3 + 3 x 2 y 2 + φ ( y ) u=x^3+3x^2y^2+\varphi(y) u=x3+3x2y2+φ(y)

再对 y y y 求导

6 x 2 y + 4 y 3 = 6 x 2 y + d φ ( y ) d y 6x^2y+4y^3=6x^2y+\frac{\mathrm{d}\varphi(y)}{\mathrm{d}y} 6x2y+4y3=6x2y+dydφ(y)

所以

φ ( y ) = y 4 \varphi(y)=y^4\\ φ(y)=y4

u = x 3 + 3 x 2 y 2 + y 4 u=x^3+3x^2y^2+y^4 u=x3+3x2y2+y4

方程通解为

x 3 + 3 x 2 y 2 + y 4 = c , c 为任意常数 x^3+3x^2y^2+y^4=c,c为任意常数 x3+3x2y2+y4=c,c为任意常数

方法二

由于

M = 3 x 2 + 6 x y 2 , N = 6 x 2 y + 4 y 3 , ∂ M ∂ y = 12 x y = ∂ N ∂ x M=3x^2+6xy^2,N=6x^2y+4y^3,\frac{\partial M}{\partial y}=12xy =\frac{\partial N}{\partial x} M=3x2+6xy2,N=6x2y+4y3,yM=12xy=xN

在整个二维实平面都连续

因此可以利用从原点 O ( 0 , 0 ) O(0,0) O(0,0) B ( x , y ) B(x,y) B(x,y) 的曲线积分来求解

u ( x , y ) = ∫ O B M ( x , y ) d x + N ( x , y ) d y = ∫ 0 x M ( x , 0 ) d x + ∫ 0 y N ( x , y ) d y = ∫ 0 x 3 x 2 d x + ∫ 0 y 6 x 2 y + 4 y 3 d y = x 3 + 3 x 2 y 2 + y 4 \begin{align*} u(x,y)&=\int^B_OM(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y\\ &=\int^x_0M(x,0)\mathrm{d}x+\int^y_0N(x,y)\mathrm{d}y\\ &=\int^x_03x^2\mathrm{d}x+\int^y_06x^2y+4y^3\mathrm{d}y\\ &=x^3+3x^2y^2+y^4 \end{align*} u(x,y)=OBM(x,y)dx+N(x,y)dy=0xM(x,0)dx+0yN(x,y)dy=0x3x2dx+0y6x2y+4y3dy=x3+3x2y2+y4

方程通解为

x 3 + 3 x 2 y 2 + y 4 = c , c 为任意常数 x^3+3x^2y^2+y^4=c,c为任意常数 x3+3x2y2+y4=c,c为任意常数

方法三

重组过程

      ( 3 x 2 + 6 x y 2 ) d x + ( 6 x 2 y + 4 y 3 ) d y = 3 x 2 d x + 6 x y 2 d x + 6 x 2 y d y + 4 y 3 d y = d x 3 + d y 4 + ( 3 y 2 d x 2 + 3 x 2 d y 2 ) = d x 3 + d y 4 + 3 d ( x 2 y 2 ) = d ( x 3 + y 4 + 3 x 2 y 2 ) = 0 \begin{align*} &\ \ \ \ \ (3x^2+6xy^2)\mathrm{d}x+(6x^2y+4y^3)\mathrm{d}y\\ &=3x^2\mathrm{d}x +6xy^2\mathrm{d}x +6x^2y\mathrm{d}y +4y^3\mathrm{d}y\\ &=\mathrm{d}x^3 +\mathrm{d}y^4 +(3y^2\mathrm{d}x^2+3x^2\mathrm{d}y^2)\\ &=\mathrm{d}x^3 +\mathrm{d}y^4 +3\mathrm{d}(x^2y^2)\\ &=\mathrm{d}(x^3+y^4+3x^2y^2)=0 \end{align*}      (3x2+6xy2)dx+(6x2y+4y3)dy=3x2dx+6xy2dx+6x2ydy+4y3dy=dx3+dy4+(3y2dx2+3x2dy2)=dx3+dy4+3d(x2y2)=d(x3+y4+3x2y2)=0

方程通解为

x 3 + 3 x 2 y 2 + y 4 = c , c 为任意常数 x^3+3x^2y^2+y^4=c,c为任意常数 x3+3x2y2+y4=c,c为任意常数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值