隐函数(组)存在定理

(隐函数存在定理-1)
设二元函数 F ( x , y ) 在点 ( x 0 , y 0 ) 的邻域 U ( x 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) 内满足以下条件: 设二元函数F(x,y)在点(x_0,y_0)的邻域U(x_0,\delta)\times U(y_0,\delta)\ (\delta >0)内满足以下条件: 设二元函数F(x,y)在点(x0,y0)的邻域U(x0,δ)×U(y0,δ) (δ>0)内满足以下条件:
( 1 ) F ( x 0 , y 0 ) = 0 (1) F(x_0,y_0)=0 (1)F(x0,y0)=0
( 2 ) F ( x , y ) 、 F y ( x , y ) 在 U ( ( x 0 , y 0 ) , δ ) ( δ > 0 ) 内连续 (2) F(x,y)、F_y(x,y)在U((x_0,y_0),\delta) (\delta >0)内连续 (2)F(x,y)Fy(x,y)U((x0,y0),δ)(δ>0)内连续
( 3 ) F y ( x 0 , y 0 ) ≠ 0 (3) F_y(x_0,y_0)\ne 0 (3)Fy(x0,y0)=0
则 ∃   δ 0 ∈ ( 0 , δ ) 使得在 U ( x 0 , δ 0 ) 内唯一存在满足下述条件的连续函数 y = f ( x ) : 则 \exists \ \delta_0 \in(0,\delta)使得在U(x_0,\delta_0)内唯一存在满足下述条件的连续函数y=f(x):  δ0(0,δ)使得在U(x0,δ0)内唯一存在满足下述条件的连续函数y=f(x)
( a ) y 0 = f ( x 0 ) ; (a) y_0=f(x_0); (a)y0=f(x0)
( b ) 对 ∀ x ∈ U ( x 0 , δ 0 ) , F ( x 0 , f ( x 0 ) ) = 0 (b)对\forall x\in U(x_0,\delta_0),F(x_0,f(x_0))=0 (b)xU(x0,δ0),F(x0,f(x0))=0
( c ) 若 F x ( x , y ) 在 U ( ( x 0 , y 0 ) , δ ) ( δ > 0 ) 内连续则 y = f ( x ) 存在连续导数,且 f ′ ( x ) = − F x F y 。 (c)若F_x(x,y)在U((x_0,y_0),\delta) (\delta >0)内连续则y=f(x)存在连续导数,且f'(x)=-\frac{F_x}{F_y}。 (c)Fx(x,y)U((x0,y0),δ)(δ>0)内连续则y=f(x)存在连续导数,且f(x)=FyFx

证明:

Alt

不妨假设 F y ( x 0 , y 0 ) > 0 F_y(x_0,y_0)>0 Fy(x0,y0)>0,而 F y ( x 0 , y 0 ) < 0 F_y(x_0,y_0)<0 Fy(x0,y0)<0的情形相当于对 F ′ ( x , y ) = − F ( x , y ) F'(x,y)=-F(x,y) F(x,y)=F(x,y)进行相关讨论。
又由 F y ( x , y ) 在 U ( x 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) F_y(x,y)在U(x_0,\delta)\times U(y_0,\delta)\ (\delta >0) Fy(x,y)U(x0,δ)×U(y0,δ) (δ>0)内的连续性可知:
∃ δ 1 , δ 2 ∈ ( 0 , δ )   s . t .  对 ∀ ( x , y ) ∈ U ( x 0 , δ 1 ) × U ( y 0 , δ 2 ) ,均有 F y ( x , y ) > 0 \exists \delta_1,\delta_2\in(0,\delta)\ s.t.\ 对\forall(x,y)\in U(x_0,\delta_1)\times U(y_0,\delta_2),均有F_y(x,y)>0 δ1,δ2(0,δ) s.t. (x,y)U(x0,δ1)×U(y0,δ2),均有Fy(x,y)>0特别地,对 ∀ y ∈ U ( y 0 , δ 2 ) \forall y\in U(y_0,\delta_2) yU(y0,δ2)均有 F y ( x 0 , y ) > 0 F_y(x_0,y)>0 Fy(x0,y)>0,即:
固定 x = x 0 ,则函数 F ( x 0 , y ) 在 y ∈ U ( y 0 , δ 2 ) 内单调递增 固定x=x_0,则函数 F(x_0,y)在y\in U(y_0,\delta_2)内单调递增 固定x=x0,则函数F(x0,y)yU(y0,δ2)内单调递增又因为, F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0,则: { F ( x 0 , y 0 + δ 2 ) > 0 F ( x 0 , y 0 − δ 2 ) < 0 \begin{cases}F(x_0,y_0+\delta_2)>0\\F(x_0,y_0-\delta_2)<0\end{cases} {F(x0,y0+δ2)>0F(x0,y0δ2)<0进一步由 F ( x , y ) 在 U ( x 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) F(x,y)在U(x_0,\delta)\times U(y_0,\delta)\ (\delta >0) F(x,y)U(x0,δ)×U(y0,δ) (δ>0)内的连续性可知: ∃ δ 0 ∈ ( 0 , δ 1 )   s . t .  对 ∀ x ∈ U ( x 0 , δ 0 ) ,均有 { F ( x , y 0 + δ 2 ) > 0 F ( x , y 0 − δ 2 ) < 0 \exists\delta_0\in(0,\delta_1)\ s.t.\ 对\forall x\in U(x_0,\delta_0),均有\begin{cases}F(x,y_0+\delta_2)>0\\F(x,y_0-\delta_2)<0\end{cases} δ0(0,δ1) s.t. xU(x0,δ0),均有{F(x,y0+δ2)>0F(x,y0δ2)<0换而言之, 对任意 x ˜ ∈ U ( x 0 , δ 0 ) 均有 F ( x ˜ , y ) 由负数 F ( x ˜ , y − δ 2 ) 连续单调地增长为正数 F ( x ˜ , y + δ 2 ) 对任意\~x\in U(x_0,\delta_0)均有F(\~x,y)由负数F(\~x,y-\delta_2)连续单调地增长为正数F(\~x,y+\delta_2) 对任意x˜U(x0,δ0)均有F(x˜,y)由负数F(x˜,yδ2)连续单调地增长为正数F(x˜,y+δ2)故由零点定理可知: 对 ∀ x ˜ ∈ U ( x 0 , δ 0 )  均唯一  ∃ y ˜ ∈ U ( y 0 , δ 2 )   s . t .   F ( x ˜ , y ˜ ) = 0 对\forall\~x\in U(x_0,\delta_0)\ 均唯一\ \exists\~y\in U(y_0,\delta_2)\ s.t.\ F(\~x,\~y)=0 x˜U(x0,δ0) 均唯一 y˜U(y0,δ2) s.t. F(x˜,y˜)=0上述讨论证明了隐函数 y ˜ = f ( x ˜ ) \~y=f(\~x) y˜=f(x˜)的唯一存在性,接下来说明隐函数的连续性:

x ^ ∈ U ( x 0 , δ 0 ) \hat{x}\in U(x_0,\delta_0) x^U(x0,δ0) y ^ = f ( x ^ ) \hat{y}=f(\hat{x}) y^=f(x^),则对充分小 ε > 0 \varepsilon>0 ε>0有: { F ( x ^ , y ^ + ε ) > 0 F ( x ^ , y ^ − ε ) < 0 \begin{cases}F(\hat{x},\hat{y}+\varepsilon)>0\\F(\hat{x},\hat{y}-\varepsilon)<0\end{cases} {F(x^,y^+ε)>0F(x^,y^ε)<0又由 F ( x , y ) F(x,y) F(x,y) ( x ^ , y ^ − ε ) 、 ( x ^ , y ^ + ε ) (\hat{x},\hat{y}-\varepsilon)、(\hat{x},\hat{y}+\varepsilon) (x^,y^ε)(x^,y^+ε)处的连续性可知: ∃ δ ′ ∈ ( 0 , δ 0 )   s . t .  对 ∀ x ∈ U ( x 0 , δ ′ ) ⊂ U ( x 0 , δ 0 ) , 均有 { F ( x , y ^ + ε ) > 0 F ( x , y ^ − ε ) < 0 ⟹ { y ^ + ε > f ( x ) y ^ − ε < f ( x ) ⟹ ∣ y ^ − f ( x ) ∣ < ε \exists \delta'\in(0,\delta_0)\ s.t.\ 对\forall x\in U(x_0,\delta')\subset U(x_0,\delta_0),均有\begin{cases}F(x,\hat{y}+\varepsilon)>0\\F(x,\hat{y}-\varepsilon)<0\end{cases}\Longrightarrow \begin{cases}\hat{y}+\varepsilon>f(x)\\\hat{y}-\varepsilon<f(x)\end{cases}\Longrightarrow |\hat{y}-f(x)|<\varepsilon δ(0,δ0) s.t. xU(x0,δ)U(x0,δ0),均有{F(x,y^+ε)>0F(x,y^ε)<0{y^+ε>f(x)y^ε<f(x)y^f(x)<ε故, ∀ ε > 0 , ∃ δ ′ > 0 ,   s . t .   ∀ x ∈ U ( x ^ , δ ′ ) : ∣ f ( x ) − y ^ ∣ < ε \forall \varepsilon>0,\exists\delta'>0,\ s.t.\ \forall x\in U(\hat{x},\delta'):|f(x)-\hat{y}|<\varepsilon ε>0,δ>0, s.t. xU(x^,δ):f(x)y^<ε符合隐函数连续性的定义。

下面证明:若 F x ( x , y ) F_x(x,y) Fx(x,y) U ( ( x 0 , y 0 ) , δ ) ( δ > 0 ) U((x_0,y_0),\delta) (\delta >0) U((x0,y0),δ)(δ>0)内连续则 y = f ( x ) y=f(x) y=f(x)存在连续导数。
任取 x ˉ ∈ U ( x 0 , δ 0 ) \bar{x}\in U(x_0,\delta_0) xˉU(x0,δ0)与充分小的增量 Δ x , s . t .   x ˉ + Δ x ∈ U ( x 0 , δ 0 ) \Delta x,s.t.\ \bar{x}+\Delta x\in U(x_0,\delta_0) Δxs.t. xˉ+ΔxU(x0,δ0),记: y ˉ = f ( x ˉ ) , Δ y = f ( x ˉ + Δ x ) − f ( x ˉ ) \bar{y}=f(\bar{x}),\Delta y=f(\bar{x}+\Delta x)-f(\bar{x}) yˉ=f(xˉ)Δy=f(xˉ+Δx)f(xˉ)由于 F ( x ˉ , f ( x ˉ ) ) = 0 , F ( x ˉ + Δ x , f ( x ˉ + Δ x ) ) = 0 F(\bar{x},f(\bar{x}))=0,F(\bar{x}+\Delta x,f(\bar{x}+\Delta x))=0 F(xˉ,f(xˉ))=0,F(xˉ+Δx,f(xˉ+Δx))=0,则由拉格朗日微分中值定理: 0 = F ( x ˉ + Δ x , f ( x ˉ + Δ x ) ) − F ( x ˉ , f ( x ˉ ) ) = F ( x ˉ + Δ x , y ˉ + Δ y ) − F ( x ˉ , y ˉ ) = F x ( x ˉ + θ Δ x , y ˉ + θ Δ y ) Δ x + F y ( x ˉ + θ Δ x , y ˉ + θ Δ y ) Δ y   ( 0 < θ < 1 ) 0=F(\bar{x}+\Delta x,f(\bar{x}+\Delta x))-F(\bar{x},f(\bar{x}))=F(\bar{x}+\Delta x,\bar{y}+\Delta y)-F(\bar{x},\bar{y})=F_x(\bar{x}+\theta\Delta x,\bar{y}+\theta\Delta y)\Delta x+F_y(\bar{x}+\theta\Delta x,\bar{y}+\theta\Delta y)\Delta y\ (0<\theta<1) 0=F(xˉ+Δx,f(xˉ+Δx))F(xˉ,f(xˉ))=F(xˉ+Δx,yˉ+Δy)F(xˉ,yˉ)=Fx(xˉ+θΔx,yˉ+θΔy)Δx+Fy(xˉ+θΔx,yˉ+θΔy)Δy (0<θ<1)由于 F y ≠ 0 F_y\ne0 Fy=0,则有: Δ y Δ x = − F x ( x ˉ + θ Δ x , y ˉ + θ Δ y ) F y ( x ˉ + θ Δ x , y ˉ + θ Δ y ) \frac{\Delta y}{\Delta x}=-\frac{F_x(\bar{x}+\theta\Delta x,\bar{y}+\theta\Delta y)}{F_y(\bar{x}+\theta\Delta x,\bar{y}+\theta\Delta y)} ΔxΔy=Fy(xˉ+θΔx,yˉ+θΔy)Fx(xˉ+θΔx,yˉ+θΔy) F x 、 F y 与 y = f ( x ) F_x、F_y与y=f(x) FxFyy=f(x)的连续性: lim ⁡ Δ x ⟶ 0 Δ y Δ x = − F x ( x ˉ , y ˉ ) F y ( x ˉ , y ˉ ) \lim_{\Delta x\longrightarrow0}\frac{\Delta y}{\Delta x}=-\frac{F_x(\bar{x},\bar{y})}{F_y(\bar{x},\bar{y})} Δx0limΔxΔy=Fy(xˉ,yˉ)Fx(xˉ,yˉ)

Remark:
(1) 隐函数存在定理所确定的隐函数只是局部存在;
(2) 隐函数存在定理只给出了隐函数存在的充分条件,若不满足定理条件也可能存在隐函数。

作为上述定理的推广,由类似的推导可以得出:
(隐函数存在定理-2)
设函数 F ( x ⃗ , y ) ( x ⃗ ∈ R n ) 在点 ( x ⃗ 0 , y 0 ) 的邻域 U ( x ⃗ 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) 内满足以下条件: 设函数F(\vec{x},y)(\vec{x}\in R^n)在点(\vec{x}_0,y_0)的邻域U(\vec{x}_0,\delta)\times U(y_0,\delta)\ (\delta >0)内满足以下条件: 设函数F(x ,y)(x Rn)在点(x 0,y0)的邻域U(x 0,δ)×U(y0,δ) (δ>0)内满足以下条件:
( 1 ) F ( x ⃗ 0 , y 0 ) = 0 (1) F(\vec{x}_0,y_0)=0 (1)F(x 0,y0)=0
( 2 ) F ( x ⃗ , y ) 、 F y ( x ⃗ , y ) 在 U ( x ⃗ 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) 内连续 (2) F(\vec{x},y)、F_y(\vec{x},y)在U(\vec{x}_0,\delta)\times U(y_0,\delta)\ (\delta >0)内连续 (2)F(x ,y)Fy(x ,y)U(x 0,δ)×U(y0,δ) (δ>0)内连续
( 3 ) F y ( x ⃗ 0 , y 0 ) ≠ 0 (3) F_y(\vec{x}_0,y_0)\ne 0 (3)Fy(x 0,y0)=0
则 ∃   δ 0 ∈ ( 0 , δ ) 使得在 U ( x ⃗ 0 , δ 0 ) 内唯一存在满足下述条件的连续函数 y = f ( x ⃗ ) : 则 \exists \ \delta_0 \in(0,\delta)使得在U(\vec{x}_0,\delta_0)内唯一存在满足下述条件的连续函数y=f(\vec{x}):  δ0(0,δ)使得在U(x 0,δ0)内唯一存在满足下述条件的连续函数y=f(x )
( a ) y 0 = f ( x ⃗ 0 ) ; (a) y_0=f(\vec{x}_0); (a)y0=f(x 0)
( b ) 对 ∀ x ⃗ ∈ U ( x ⃗ 0 , δ 0 ) , F ( x ⃗ 0 , f ( x ⃗ 0 ) ) = 0 (b)对\forall \vec{x}\in U(\vec{x}_0,\delta_0),F(\vec{x}_0,f(\vec{x}_0))=0 (b)x U(x 0,δ0),F(x 0,f(x 0))=0
( c ) 若 F ( x ⃗ , y ) 在 U ( x ⃗ 0 , δ ) × U ( y 0 , δ )   ( δ > 0 ) 内存在关于各 x i 的连续偏导数,那么 y = f ( x ⃗ ) 存在关于各 x i 的连续偏导数,且 ∂ f ( x ⃗ ) ∂ x i = − F x i F y   ( i = 1 , 2 , … , n ) 。 (c)若F(\vec{x},y)在U(\vec{x}_0,\delta)\times U(y_0,\delta)\ (\delta >0)内存在关于各x_i的连续偏导数,那么y=f(\vec{x})存在关于各x_i的连续偏导数,且\frac{\partial f(\vec{x})}{\partial x_i}=-\frac{F_{x_i}}{F_y}\ (i=1,2,\dots,n)。 (c)F(x ,y)U(x 0,δ)×U(y0,δ) (δ>0)内存在关于各xi的连续偏导数,那么y=f(x )存在关于各xi的连续偏导数,且xif(x )=FyFxi (i=1,2,,n)

(隐函数组存在定理)
设向量函数 F ⃗ ( x ⃗ , u ⃗ ) = ( F 1 ( x ⃗ , u ⃗ ) , F 2 ( x ⃗ , u ⃗ ) , … , F m ( x ⃗ , u ⃗ ) ) , 其中 x ⃗ = ( x 1 , x 2 , … , x n ) ∈ R n , u ⃗ = ( u 1 , u 2 , … , u m ) ∈ R m , 在 U ( x ⃗ 0 , δ ) × U ( u ⃗ 0 , δ )   ( δ > 0 ) 内满足条件: 设向量函数\vec{F}(\vec{x},\vec{u})=(F_1(\vec{x},\vec{u}),F_2(\vec{x},\vec{u}),\dots,F_m(\vec{x},\vec{u})),其中\vec{x}=(x_1,x_2,\dots,x_n)\in R^n,\vec{u}=(u_1,u_2,\dots,u_m)\in R^m,在U(\vec{x}_0,\delta)\times U(\vec{u}_0,\delta)\ (\delta>0)内满足条件: 设向量函数F (x ,u )=(F1(x ,u ),F2(x ,u ),,Fm(x ,u )),其中x =(x1,x2,,xn)Rn,u =(u1,u2,,um)Rm,U(x 0,δ)×U(u 0,δ) (δ>0)内满足条件:
( 1 ) F i ( x ⃗ 0 , u ⃗ 0 ) = 0 , i = 1 , 2 , … , m ; (1)F_i(\vec{x}_0,\vec{u}_0)=0,i=1,2,\dots,m; (1)Fi(x 0,u 0)=0i=1,2,,m
( 2 ) F i ( x ⃗ , u ⃗ ) 与其关于 u i 各个偏导在 U ( x ⃗ 0 , δ ) × U ( u ⃗ 0 , δ ) 内连续; (2)F_i(\vec{x},\vec{u})与其关于u_i各个偏导在U(\vec{x}_0,\delta)\times U(\vec{u}_0,\delta)内连续; (2)Fi(x ,u )与其关于ui各个偏导在U(x 0,δ)×U(u 0,δ)内连续;
( 3 ) 雅可比行列式 ∂ ( F 1 , F 2 , … , F m ) ∂ ( u 1 , u 2 , … , u m ) ∣ x ⃗ = x ⃗ 0 ; u ⃗ = u ⃗ 0 ≠ 0 (3)雅可比行列式\frac{\partial (F_1,F_2,\dots,F_m)}{\partial (u_1,u_2,\dots,u_m)}|_{\vec{x}=\vec{x}_0;\vec{u}=\vec{u}_0}\ne0 (3)雅可比行列式(u1,u2,,um)(F1,F2,,Fm)x =x 0;u =u 0=0
则 ∃   δ 0 ∈ ( 0 , δ ) 使得在 U ( x ⃗ 0 , δ 0 ) × U ( u ⃗ 0 , δ 0 ) 内唯一存在 m 维 n 元向量函数 则 \exists \ \delta_0 \in(0,\delta)使得在U(\vec{x}_0,\delta_0)\times U(\vec{u}_0,\delta_0)内唯一存在m维n元向量函数  δ0(0,δ)使得在U(x 0,δ0)×U(u 0,δ0)内唯一存在mn元向量函数 u ⃗ ( x ⃗ ) = ( u 1 ( x ⃗ ) , u 2 ( x ⃗ ) , … , u m ( x ⃗ ) ) \vec{u}(\vec{x})=(u_1(\vec{x}),u_2(\vec{x}),\dots,u_m(\vec{x})) u (x )=(u1(x ),u2(x ),,um(x ))满足:
( a ) u ⃗ 0 = ( u 1 ( x ⃗ 0 ) , u 2 ( x ⃗ 0 ) , … , u m ( x ⃗ 0 ) ) ; (a)\vec{u}_0=(u_1(\vec{x}_0),u_2(\vec{x}_0),\dots,u_m(\vec{x}_0)); (a)u 0=(u1(x 0),u2(x 0),,um(x 0))
( b ) 对任意 F i 与 x ⃗ ∈ U ( x ⃗ 0 , δ 0 ) 均有 F i ( x ⃗ , u ⃗ ( x ⃗ ) ) = 0 ; (b)对任意F_i与\vec{x}\in U(\vec{x}_0,\delta_0)均有F_i(\vec{x},\vec{u}(\vec{x}))=0; (b)对任意Fix U(x 0,δ0)均有Fi(x ,u (x ))=0
( c ) 若 F i 对任意 x j 有连续的偏导数,则 u k 对 x j 的偏导连续,记 (c)若F_i对任意x_j有连续的偏导数,则u_k对x_j的偏导连续,记 (c)Fi对任意xj有连续的偏导数,则ukxj的偏导连续,记
A = [ ∂ F 1 ( x ⃗ , u ⃗ ) ∂ x 1 ∂ F 1 ( x ⃗ , u ⃗ ) ∂ x 2 … ∂ F 1 ( x ⃗ , u ⃗ ) ∂ x n ∂ F 2 ( x ⃗ , u ⃗ ) ∂ x 1 ∂ F 2 ( x ⃗ , u ⃗ ) ∂ x 2 … ∂ F 2 ( x ⃗ , u ⃗ ) ∂ x n ⋮ ⋮ ⋮ ∂ F m ( x ⃗ , u ⃗ ) ∂ x 1 ∂ F m ( x ⃗ , u ⃗ ) ∂ x 2 … ∂ F m ( x ⃗ , u ⃗ ) ∂ x n ] m × n B = [ ∂ F 1 ( x ⃗ , u ⃗ ) ∂ u 1 ∂ F 1 ( x ⃗ , u ⃗ ) ∂ u 2 … ∂ F 1 ( x ⃗ , u ⃗ ) ∂ u m ∂ F 2 ( x ⃗ , u ⃗ ) ∂ u 1 ∂ F 2 ( x ⃗ , u ⃗ ) ∂ u 2 … ∂ F 2 ( x ⃗ , u ⃗ ) ∂ u m ⋮ ⋮ ⋮ ∂ F m ( x ⃗ , u ⃗ ) ∂ u 1 ∂ F m ( x ⃗ , u ⃗ ) ∂ u 2 … ∂ F m ( x ⃗ , u ⃗ ) ∂ u m ] m × m A=\begin{bmatrix} \frac{\partial F_1(\vec{x},\vec{u})}{\partial x_1}&\frac{\partial F_1(\vec{x},\vec{u})}{\partial x_2}&\dots&\frac{\partial F_1(\vec{x},\vec{u})}{\partial x_n}\\ \frac{\partial F_2(\vec{x},\vec{u})}{\partial x_1}&\frac{\partial F_2(\vec{x},\vec{u})}{\partial x_2}&\dots&\frac{\partial F_2(\vec{x},\vec{u})}{\partial x_n}\\ \vdots&\vdots&&\vdots\\ \frac{\partial F_m(\vec{x},\vec{u})}{\partial x_1}&\frac{\partial F_m(\vec{x},\vec{u})}{\partial x_2}&\dots&\frac{\partial F_m(\vec{x},\vec{u})}{\partial x_n} \end{bmatrix}_{m\times n} B=\begin{bmatrix} \frac{\partial F_1(\vec{x},\vec{u})}{\partial u_1}&\frac{\partial F_1(\vec{x},\vec{u})}{\partial u_2}&\dots&\frac{\partial F_1(\vec{x},\vec{u})}{\partial u_m}\\ \frac{\partial F_2(\vec{x},\vec{u})}{\partial u_1}&\frac{\partial F_2(\vec{x},\vec{u})}{\partial u_2}&\dots&\frac{\partial F_2(\vec{x},\vec{u})}{\partial u_m}\\ \vdots&\vdots&&\vdots\\ \frac{\partial F_m(\vec{x},\vec{u})}{\partial u_1}&\frac{\partial F_m(\vec{x},\vec{u})}{\partial u_2}&\dots&\frac{\partial F_m(\vec{x},\vec{u})}{\partial u_m}\\ \end{bmatrix}_{m\times m} A= x1F1(x ,u )x1F2(x ,u )x1Fm(x ,u )x2F1(x ,u )x2F2(x ,u )x2Fm(x ,u )xnF1(x ,u )xnF2(x ,u )xnFm(x ,u ) m×nB= u1F1(x ,u )u1F2(x ,u )u1Fm(x ,u )u2F1(x ,u )u2F2(x ,u )u2Fm(x ,u )umF1(x ,u )umF2(x ,u )umFm(x ,u ) m×m u ⃗ ′ ( x ⃗ ) = [ ∂ u 1 ( x ⃗ ) ∂ x 1 ∂ u 1 ( x ⃗ ) ∂ x 2 … ∂ u 1 ( x ⃗ ) ∂ x n ∂ u 2 ( x ⃗ ) ∂ x 1 ∂ u 2 ( x ⃗ ) ∂ x 2 … ∂ u 2 ( x ⃗ ) ∂ x n ⋮ ⋮ ⋮ ∂ u m ( x ⃗ ) ∂ x 1 ∂ u m ( x ⃗ ) ∂ x 2 … ∂ u m ( x ⃗ ) ∂ x n ] m × n = − B − 1 A \vec{u}'(\vec{x})= \begin{bmatrix} \frac{\partial u_1(\vec{x})}{\partial x_1}&\frac{\partial u_1(\vec{x})}{\partial x_2}&\dots&\frac{\partial u_1(\vec{x})}{\partial x_n}\\ \frac{\partial u_2(\vec{x})}{\partial x_1}&\frac{\partial u_2(\vec{x})}{\partial x_2}&\dots&\frac{\partial u_2(\vec{x})}{\partial x_n}\\ \vdots&\vdots&&\vdots\\ \frac{\partial u_m(\vec{x})}{\partial x_1}&\frac{\partial u_m(\vec{x})}{\partial x_2}&\dots&\frac{\partial u_m(\vec{x})}{\partial x_n}\\ \end{bmatrix}_{m\times n}=-B^{-1}A u (x )= x1u1(x )x1u2(x )x1um(x )x2u1(x )x2u2(x )x2um(x )xnu1(x )xnu2(x )xnum(x ) m×n=B1A

证明:(数学归纳法)
m = 2 m=2 m=2时,由于 ∂ ( F 1 , F 2 ) ∂ ( u 1 , u 2 ) ∣ x ⃗ = x ⃗ 0 ; u ⃗ = u ⃗ 0 = ∣ ∂ F 1 ∂ u 1 ∂ F 1 ∂ u 2   ∂ F 2 ∂ u 1 ∂ F 2 ∂ u 2 ∣ x ⃗ = x ⃗ 0 ; u ⃗ = u ⃗ 0 ≠ 0 \frac{\partial (F_1,F_2)}{\partial (u_1,u_2)}|_{\vec{x}=\vec{x}_0;\vec{u}=\vec{u}_0}=\begin{vmatrix}\frac{\partial F_1}{\partial u_1}&\frac{\partial F_1}{\partial u_2}\\\ \\\frac{\partial F_2}{\partial u_1}&\frac{\partial F_2}{\partial u_2}\end{vmatrix}_{\vec{x}=\vec{x}_0;\vec{u}=\vec{u}_0}\ne0 (u1,u2)(F1,F2)x =x 0;u =u 0= u1F1 u1F2u2F1u2F2 x =x 0;u =u 0=0则其中各行不可能所有元素为零,不妨假设 ∂ F 2 ∂ u 2 ≠ 0 \frac{\partial F_2}{\partial u_2}\ne 0 u2F2=0。若 ∂ F 2 ∂ u 2 = 0 \frac{\partial F_2}{\partial u_2}=0 u2F2=0,则 ∂ F 2 ∂ u 1 \frac{\partial F_2}{\partial u_1} u1F2必不为零,同样可进行如下相同的处理:
由隐函数存在定理-2: ∃ δ 1 ∈ ( 0 , δ ) \exists \delta_1\in(0,\delta) δ1(0,δ)使得方程 F 2 ( x ⃗ , u 1 , u 2 ) = 0 F_2(\vec{x},{u}_1,u_2)=0 F2(x ,u1,u2)=0 U ( x ⃗ 0 , δ 1 ) × U ( u 1 0 , δ 1 ) U(\vec{x}_0,\delta_1)\times U({u_1}^0,\delta_1) U(x 0,δ1)×U(u10,δ1)内存在唯一的连续函数(其关于 u 1 u_1 u1偏导也连续) u 2 = u 2 ( x ⃗ , u 1 ) , 且 ∂ u 2 ∂ u 1 = − ∂ F 2 ∂ u 1 ∂ F 2 ∂ u 2 u_2=u_2(\vec{x},u_1),且\frac{\partial u_2}{\partial u_1}=-\frac{\frac{\partial F_2}{\partial u_1}}{\frac{\partial F_2}{\partial u_2}} u2=u2(x ,u1),u1u2=u2F2u1F2代入另一方程得:
H ( x ⃗ , u 1 ) = F 1 ( x ⃗ , u 1 , u 2 ( x ⃗ , u 1 ) ) = 0 H(\vec{x},u_1) =F_1(\vec{x},u_1,u_2(\vec{x},u_1))=0 H(x ,u1)=F1(x ,u1,u2(x ,u1))=0由于
∂ H ( x ⃗ 0 , u 1 0 ) ∂ u 1 = ∂ F 1 ∂ u 1 + ∂ F 1 ∂ u 2 ∂ u 2 ∂ u 1 = ∂ F 1 ∂ u 1 − ∂ F 1 ∂ u 2 ∂ F 2 ∂ u 1 ∂ F 2 ∂ u 2 = 1 ∂ F 2 ∂ u 2 ( ∂ F 2 ∂ u 2 ∂ F 1 ∂ u 1 − ∂ F 1 ∂ u 2 ∂ F 2 ∂ u 1 ) = 1 ∂ F 2 ∂ u 2 ∂ ( F 1 , F 2 ) ∂ ( u 1 , u 2 ) ≠ 0 \frac{\partial H(\vec{x}_0,{u_1}^0)}{\partial u_1} =\frac{\partial {F_1}}{\partial u_1}+\frac{\partial F_1}{\partial u_2}\frac{\partial u_2}{\partial u_1}=\frac{\partial {F_1}}{\partial u_1}-\frac{\partial F_1}{\partial u_2}\frac{\frac{\partial F_2}{\partial u_1}}{\frac{\partial F_2}{\partial u_2}} =\frac{1}{\frac{\partial F_2}{\partial u_2}}(\frac{\partial F_2}{\partial u_2}\frac{\partial F_1}{\partial u_1}-\frac{\partial F_1}{\partial u_2}\frac{\partial F_2}{\partial u_1}) =\frac{1}{\frac{\partial F_2}{\partial u_2}}\frac{\partial (F_1,F_2)}{\partial (u_1,u_2)} \ne 0 u1H(x 0,u10)=u1F1+u2F1u1u2=u1F1u2F1u2F2u1F2=u2F21(u2F2u1F1u2F1u1F2)=u2F21(u1,u2)(F1,F2)=0 ∃ δ 0 ∈ ( 0 , δ 1 ) \exists \delta_0\in(0,\delta_1) δ0(0,δ1)使得方程 H ( x ⃗ , u 1 ) = 0 H(\vec{x},{u}_1)=0 H(x ,u1)=0 U ( x ⃗ 0 , δ 0 ) U(\vec{x}_0,\delta_0) U(x 0,δ0)内存在唯一连续函数 u 1 = u 1 ( x ⃗ ) u_1=u_1(\vec{x}) u1=u1(x )故该方程组
{ F 1 ( x ⃗ , u 1 , u 2 ) = 0 F 2 ( x ⃗ , u 1 , u 2 ) = 0 确定了连续的隐函数组 { u 1 = u 1 ( x ⃗ ) u 2 = u 2 ( x ⃗ , u 1 ( x ⃗ ) ) \begin{cases}F_1(\vec{x},u_1,u_2)=0\\F_2(\vec{x},u_1,u_2)=0\end{cases}确定了连续的隐函数组\begin{cases}u_1=u_1(\vec{x})\\u_2=u_2(\vec{x},u_1(\vec{x}))\end{cases} {F1(x ,u1,u2)=0F2(x ,u1,u2)=0确定了连续的隐函数组{u1=u1(x )u2=u2(x ,u1(x ))
进一步,若 F i ( x ⃗ , u ⃗ ) ( i = 1 , 2 , . . . , m ) F_i(\vec{x},\vec{u})(i=1,2,...,m) Fi(x ,u )i=1,2,...,m x j ( j = 1 , 2 , … , n ) x_j(j=1,2,\dots,n) xjj=1,2,,n均有连续偏导数
{ ∂ F 1 ∂ x i + ∂ F 1 ∂ u 1 ∂ u 1 ∂ x i + ∂ F 1 ∂ u 2 ∂ u 2 ∂ x i = 0 ∂ F 2 ∂ x i + ∂ F 2 ∂ u 1 ∂ u 1 ∂ x i + ∂ F 2 ∂ u 2 ∂ u 2 ∂ x i = 0 ⟺ [ ∂ F 1 ∂ u 1 ∂ F 1 ∂ u 2 ∂ F 2 ∂ u 1 ∂ F 2 ∂ u 2 ] [ ∂ u 1 ∂ x i ∂ u 2 ∂ x i ] = − [ ∂ F 1 ∂ x i ∂ F 2 ∂ x i ] ⟺ [ ∂ F 1 ∂ u 1 ∂ F 1 ∂ u 2 ∂ F 2 ∂ u 1 ∂ F 2 ∂ u 2 ] [ ∂ u 1 ∂ x 1 ∂ u 1 ∂ x 2 … ∂ u 1 ∂ x n ∂ u 2 ∂ x 1 ∂ u 2 ∂ x 2 … ∂ u 2 ∂ x n ] = − [ ∂ F 1 ∂ x 1 ∂ F 1 ∂ x 2 … ∂ F 1 ∂ x n ∂ F 2 ∂ x 1 ∂ F 2 ∂ x 2 … ∂ F 2 ∂ x n ] ⟺ u ⃗ ′ ( x ⃗ ) = − B − 1 A \begin{cases} \frac{\partial F_1}{\partial x_i}+\frac{\partial F_1}{\partial u_1}\frac{\partial u_1}{\partial x_i}+\frac{\partial F_1}{\partial u_2}\frac{\partial u_2}{\partial x_i}=0\\ \\ \frac{\partial F_2}{\partial x_i}+\frac{\partial F_2}{\partial u_1}\frac{\partial u_1}{\partial x_i}+\frac{\partial F_2}{\partial u_2}\frac{\partial u_2}{\partial x_i}=0\end{cases} \Longleftrightarrow \begin{bmatrix} \frac{\partial F_1}{\partial u_1}&\frac{\partial F_1}{\partial u_2}\\ \\ \frac{\partial F_2}{\partial u_1}&\frac{\partial F_2}{\partial u_2} \end{bmatrix} \begin{bmatrix}\frac{\partial u_1}{\partial x_i}\\ \\ \frac{\partial u_2}{\partial x_i} \end{bmatrix} =-\begin{bmatrix} \frac{\partial F_1}{\partial x_i}\\ \\ \frac{\partial F_2}{\partial x_i} \end{bmatrix} \Longleftrightarrow \begin{bmatrix} \frac{\partial F_1}{\partial u_1}&\frac{\partial F_1}{\partial u_2}\\ \\ \frac{\partial F_2}{\partial u_1}&\frac{\partial F_2}{\partial u_2} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial x_1}&\frac{\partial u_1}{\partial x_2}&\dots&\frac{\partial u_1}{\partial x_n}\\ \\ \frac{\partial u_2}{\partial x_1}&\frac{\partial u_2}{\partial x_2}&\dots&\frac{\partial u_2}{\partial x_n} \end{bmatrix} =-\begin{bmatrix} \frac{\partial F_1}{\partial x_1}&\frac{\partial F_1}{\partial x_2}&\dots&\frac{\partial F_1}{\partial x_n}\\ \\ \frac{\partial F_2}{\partial x_1}&\frac{\partial F_2}{\partial x_2}&\dots&\frac{\partial F_2}{\partial x_n} \end{bmatrix} \Longleftrightarrow \vec{u}'(\vec{x})=-B^{-1}A xiF1+u1F1xiu1+u2F1xiu2=0xiF2+u1F2xiu1+u2F2xiu2=0 u1F1u1F2u2F1u2F2 xiu1xiu2 = xiF1xiF2 u1F1u1F2u2F1u2F2 x1u1x1u2x2u1x2u2xnu1xnu2 = x1F1x1F2x2F1x2F2xnF1xnF2 u (x )=B1A
假设对 m − 1 m-1 m1个方程构成的方程组定理均成立,则 m m m个方程构成的方程组经过一次消元后得到 m − 1 m-1 m1个方程构成的方程组,可推知定理成立,此处不再赘述。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值