通义千问(Qwen)是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。
今天我们来对这个模型进行本地部署实践
一、环境要求
-
python 3.8及以上版本
-
pytorch 1.12及以上版本,推荐2.0及以上版本
-
建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
二 、快速部署
git clone https://github.com/QwenLM/Qwen``pip install -r requirements.txt
PS:如果你的显卡支持fp16或bf16精度你还推荐安装flash-attention来提高你的运行效率以及降低显存占用。(不是必选项)
git clone -b v1.0.8 https://github.com/Dao-AILab/flash-attention``cd flash-attention && pip install .
下面我们可以Transformers来调用qwen模型了,代码具体如下:
from transformers import AutoModelForCausalLM, AutoTokenizer``from transformers.generation import GenerationConfig``?``# 可选的模型包括: "Qwen/Qwen-7B", "Qwen/Qwen-14B"``tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)``?``# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存``# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()``# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存``# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, fp16=True).eval()``# 使用CPU进行推理,需要约32GB内存``# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="cpu", trust_remote_code=True).eval()``# 默认使用自动模式,根据设备自动选择精度``model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True).eval()``?``# 可指定不同的生成长度、top_p等相关超参``model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)``?``inputs = tokenizer('南斯拉夫战争后,分裂为哪几个国家?', return_tensors='pt')``inputs = inputs.to(model.device)``pred = model.generate(**inputs)``print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))``# 南斯拉夫战争之后,南斯拉夫社会主义联邦共和国彻底解体,分裂为以下几个独立国家: 斯洛文尼亚 克罗地亚 波斯尼亚和黑塞哥维纳(波黑) 北马其顿 黑山 塞尔维亚.....
三 、模型量化
1、AutoGPTQ量化法:
在量化使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包:
pip install auto-gptq optimum
如安装auto-gptq遇到问题,我们建议您到官方repo搜索合适的wheel。repo网址:
https://github.com/PanQiWei/AutoGPTQ
随后即可使用和上述一致的用法调用量化模型:
# 可选用的模型包括:"Qwen/Qwen-7B-Chat-Int4", "Qwen/Qwen-14B-Chat-Int4"``model = AutoModelForCausalLM.from_pretrained(` `"Qwen/Qwen-7B-Chat-Int4",` `device_map="auto",` `trust_remote_code=True``).eval()``response, history = model.chat(tokenizer, "hello", history=None)
2、KV cache量化法
提供use_cache_quantization以及use_cache_kernel两个参数对模型控制,当use_cache_quantization以及use_cache_kernel均开启时,将启动kv-cache量化的功能。具体使用如下:
model = AutoModelForCausalLM.from_pretrained(` `"Qwen/Qwen-7B-Chat",` `device_map="auto",` `trust_remote_code=True,` `use_cache_quantization=True,` `use_cache_kernel=True,` `use_flash_attn=False``)
四、微调
在已经下载的程序目录,找到finetune.py脚本,它供用户实现在自己的数据上进行微调的功能。
1、准备微调数据,需要的微调数据样式如下:
[` `{` `"id": "identity_0",` `"conversations": [` `{` `"from": "user",` `"value": "九源的山楂树林里有几棵树?",` `},` `{` `"from": "assistant",` `"value": "有15棵树"` `}` `]` `}``]
准备好数据后,你可以使用我们提供的shell脚本实现微调。
注意,需要在脚本中指定你的数据的路径。
finetune目录下有几个脚本:能够帮你实现,全参数微调,LoRA,Q-LoRA集中方式的微调。
全参数微调:
# 分布式训练。由于显存限制将导致单卡训练失败,我们不提供单卡训练脚本。``# 注意运行前改数据文件路径哦``sh finetune/finetune_ds.sh
LoRA微调:
在开始前,请确保已经安装peft代码库。另外,记住要设置正确的模型、数据和输出路径。我们建议你为模型路径使用绝对路径。这是因为LoRA仅存储adapter部分参数,而adapter配置json文件记录了预训练模型的路径,用于读取预训练模型权重。
# 单卡训练``sh finetune/finetune_lora_single_gpu.sh``# 分布式训练``sh finetune/finetune_lora_ds.sh
Q-LoRA微调:
# 分布式训练``sh finetune/finetune_qlora_ds.sh``# 官方建议你使用我们提供的Int4量化模型进行训练,即Qwen-7B-Chat-Int4。然而,与全参数微调以及LoRA不同,Q-LoRA仅支持fp16。
微调完成后,和全参数微调不同,LoRA和Q-LoRA的训练只需存储adapter部分的参数。具体代码如下:
from peft import AutoPeftModelForCausalLM`` ``model = AutoPeftModelForCausalLM.from_pretrained(` `path_to_adapter, # path to the output directory` `device_map="auto",` `trust_remote_code=True``).eval()
五、WEB UI
觉得命令行调用太不方便,官方提供了webui,具体安装如下:
pip install -r requirements_web_demo.txt``# 随后运行脚本启动web``python web_demo.py --server-port 8087 --server-name "0.0.0.0"
六、对外API
先安装依赖
pip install fastapi uvicorn openai "pydantic>=2.3.0" sse_starlette
随后即可运行以下命令部署你的本地API:
python openai_api.py
具体调用api脚本:
import openai``openai.api_base = "http://localhost:8000/v1"``openai.api_key = "none"``response = openai.ChatCompletion.create(` `model="Qwen",` `messages=[` `{"role": "user", "content": "hello"}` `],` `stream=False,` `stop=[] # 在此处添加自定义的stop words``)``print(response.choices[0].message.content)
END
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】或点击下方蓝色字 即可免费领取↓↓↓
**读者福利 |**
👉2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**