主要参考资料:
-
Meta-Learning 元学习
-
domain adaptation 领域自适应
需要解决的问题
earning a model from multi-domain source data such that it can directly generalize to an unseen target domain从多源域数据概括成一个不可见的域?
- 解释:Domain Adaptation相关知识。主要:一种算法去实现泛化。通过对多源域的学习,提取公共信息,对未知数据集有合理的output。也就是说,在目标域还不明确的情况下,可以训练适应性强的分类器
AI发展的趋势背景
- AI→Machine Learning→DL→DRL深度强化学习→Meat-Learning元学习
- Meat-Learning出现的原因:对于通过以往经验学习来解决新问题,普通DL只能做到解决某个问题(×)。深度强化学习需要大量的训练数据(×)且对复杂的环境效果不好。因此Meat-learning要实现“根据以往的经验,对新问题持续学习,学会思考解决方案”。相当于是超级智能AI,像人一样
- 监督学习和无监督学习的区别:是否有标签
关于Domain Adaptation
- https://zhuanlan.zhihu.com/p/106838343?utm_source=wechat_session 待看
- https://zhuanlan.zhihu.com/p/21441807 领域自适应及其在人脸识别中的应用,中科院研究所
- 经验误差最小准则:用算数平均代替数学期望;
- 领域自适应:使用信息丰富的源域,来提升目标域的模型性能
- 源域:与测试样本,目标域不同,但有一些信息非常有用;目标域:目标要实现的功能;
- 源域和目标域是同一个任务,但数据不属于同一类
- 举例:比如华为和新加坡国立大学的Few-shot Adaptive Faster R-CNN CVPR 2019,车子在恶劣天气下(目标域),正常天气下(源域);在西方人的模型(源于)中如果想用亚洲面孔作为输入,结果会很糟糕,为了改变这样的情况,出现了迁移学习,领域自适应,是迁移学习的一种典型学习方法
- 方法:1.样本自适应(重新采样,对损失函数进行骚操作) ; 2.特征自适应 3.模型自适应
- 领域自适应用于:无监督的,有监督的,异构分布和多个源域(和paper相关)问题
- 个人理解:其实无论何种适配方法,通过考虑源域和目标域的差异,在网络中进行修正
- https://blog.csdn.net/u013841196/article/details/80957057 迁移学习