干货 | 什么是表面粗糙度?

前言

表面粗糙度对大部分参与滑动接触的表面而言是非常重要的。因为磨损的原始速率及持续的性质等因素高度依赖这一特性。这些表面一般是承重面,而且需标识粗糙度已确保预计用途的适用性。

许多零部件需要具有特定的表面加工结果,以便达成所要求的功能。例如烤漆前的汽车车体或曲轴或凸轮轴上的颈轴承。我们先了解一下什么是表面粗糙度。

图片

什么是表面粗糙度

表面粗糙度(Surface Roughness)就是我们日常测量中所说的面粗糙度,可以理解为在加工产品过程中细小间距和微小峰谷的不平整度。

通常被定义为两个波峰值或者两个波谷指之间的微小距离(波距),在一般情况下波距都在1mm以内或者更小,也可定义为微观轮廓的测量,俗称微观误差值。

图片

综上所说,大家可能已经有了一个关于粗糙度笼统的概念,那么下记内容是更详细的进行了分析。我们一般评价粗糙度会有基准线,基准线以上最高点我们叫波峰点,基准线以下最低点叫波谷点,那么波峰和波谷之间的高度我们用Z来表示,加工产品的微观纹理的间距我们用S来表示。

图片

通常情况下S值的大小在国家检定标准里给了相关的定义:
S<1mm 定义为表面粗糙度

S<1mm 定义为表面粗糙度

1≤S≤10mm 定义为表面波纹度

中国国家计量检定标准中规定:通常情况下用VDI3400、Ra,、Rmax这三个参数来评价检定表面粗糙度,计量单位通常用μm表示。

评价参数的关系

  Ra定义为曲线平均算术偏差(平均粗糙度),Rz的定义为不平度平均高度,Ry定义为最大高度。微观轮廓的最大高度差Ry在其他也使用Rmax来表示。

Ra、Rmax的具体关系还请参考下面的表格:

图片

表:Ra,Rmax参数对比(um)

2 表面粗糙度是如何形成的

  表面粗糙度的形成是由工件的加工过程引起的。而加工的方法、工件的材料,工艺过程都是影像表面粗糙度的因素。例如:放电加工时被加工零件表面出现放电凹凸点。

加工工艺和零件材质有所不同,被加工零件表面留下的微观痕迹也有各种差别,比如(疏密,深浅,形状变化等)。

表面粗糙度对工件的影响

工件的耐磨性、配合稳定性、疲劳强度、耐腐蚀性、密封性、接触刚度、测量精度……镀涂层、导热性和接触电阻、反射能力和辐射性能、液体和气体流动的阻力、导体表面电流的流通等都会有不同程度的影响。

图片

表面粗糙度的评价依据

取样长度

各参数的单位长度,取样长度是评价表面粗糙度规定一段基准线的长度。

在ISO1997标准下一般使用0.08mm,0.25mm,0.8mm,2.5mm,8mm为基准长度。

评价长度

由N个基准长度所构成。零部件表面各部分的表面粗糙度,在一个基准长度上无法真实的体现出粗糙度真实参数,而是需要取N个取样长度来评定表面粗糙度。在ISO1997标准下评定长度一般为N等于5。

基准线

基准线是评定粗糙度参数的轮廓中线。一般有最小二乘法中线和轮廓算术平均中线。
【最小二乘法中线】是把测量过程中采集的点进行最小二乘法计算。【轮廓算术平均中线】在取样长度内,使中线上下两部分轮廓的面积相等。

理论上最小二乘中线是理想的基准线,但在实际应用中很难获得,因此一般用轮廓的算术平均中线代替,且测量时可用一根位置近似的直线进行代替使用。

5 表面粗糙度如何获得

表面粗糙度的评价在制造业中越发被重视。要研究表面粗糙度,需要使用专用的机器,即:

表面粗糙度测量仪

图片

复合测量机Formtracer Avant系列

表面粗糙度测量机是以安装高敏感性金刚石测针划过表面,就像是留声机的拾音器一样。再将大柜规模波纹以及轮廓的小波长粗糙度从较长波长中分离出来,即测量仪做电子过滤。

图片

*测针型粗糙度测量仪特性的定义可参考ISO 3274:1996

测针式表面粗糙度测量仪的构成示意图:

图片


测针形状种类:

图片

手持工具测量

大部分正确的、完整的表面粗糙度测量法,虽然都是使用专用的测量机,但在有的情况下,为了快捷且低成本操作也可以使用手持套装工具测量。
如下图:

图片


粗糙度比较片是以镍为基础,以电铸方式制成的样本,用于金属加工非常理想,属于非常有效的辅助工具。操作者使用时只要以指甲在一组中的每一片表面都横刮而过,寻找与被比较工件最接近的即可。有人会将这些模型组作为查询表,但是值得注意的是,这并非材质标准。

粗糙度测量机可以实现的功能不同,评价的方法不同,成本也各有高低。选型之前可以到专业的生产厂商进行咨询,根据所需选择最适合的机型。

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值