《投资-341》量化交易 - 编程 - 时序相关算子和聚合函数:以 m 打头;截面相关算子和聚合函数:以 c 打头

在 BigQuant 量化交易平台中,其内置的算子(Operators)和聚合函数(Aggregation Functions)确实遵循一套清晰的命名约定,用于区分时序操作(Time Series Operations)和截面操作(Cross-Sectional Operations)。以下是详细说明:


**1. 时序相关算子和聚合函数:以 m 打头**

  • 含义
    m 代表 **Moving**(移动窗口)或 **Moment**(时序动量),用于处理**单个资产在时间维度上的计算**(例如:滚动窗口、历史序列分析)。

  • 命名规则
    函数名以 **m_ 开头**(例如 m_avgm_std)。

  • 典型场景
    计算单只股票的 5 日移动平均、20 日波动率等。

  • 常见函数示例

    函数名说明示例用法
    m_avg移动平均m_avg(window=5)
    m_std移动标准差m_std(window=10)
    m_sum移动求和m_sum(window=20)
    m_max / m_min移动窗口最大值/最小值m_max(window=30)
    m_delay时序延迟(滞后值)m_delay(periods=1)
    m_diff时序差分m_diff(periods=1)
    m_prod移动连乘m_prod(window=5)
  • 关键特点

    • 作用于单资产的时间序列(如 close 价格序列)。
    • 依赖窗口大小window 参数),需指定历史数据长度。
    • 返回结果与输入序列长度一致(滚动计算)。

✅ 验证:在 BigQuant 因子库中,所有时序操作函数均以 m_ 开头,这是平台的核心设计规范。


**2. 截面相关算子和聚合函数:以 c 打头**

  • 含义
    c 代表 **Cross-Sectional**(截面),用于处理**同一时间点上多资产的横向计算**(例如:全市场股票排名、行业标准化)。

  • 命名规则
    函数名以 **c_ 开头**(例如 c_rankc_norm)。

  • 典型场景
    计算某日所有股票的收益率排名、按行业中性化处理因子值等。

  • 常见函数示例

    函数名说明示例用法
    c_rank截面排名c_rank()
    c_scale截面缩放(标准化到均值为0)c_scale()
    c_neutralize截面中性化(去除行业/市值影响)c_neutralize(group='industry')
    c_zscore截面 Z-Score 标准化c_zscore()
    c_sum / c_mean截面求和/均值c_sum()
    c_industry行业分组操作c_industry(group='sw_l1')
    c_winsorize截面缩尾处理c_winsorize(min=0.05, max=0.95)
  • 关键特点

    • 作用于单时间点的多资产横截面(如某日所有股票的 open 价格)。
    • 无需窗口参数(针对单一时点计算)。
    • 返回结果与输入资产数量一致(横向聚合)。

✅ 验证:BigQuant 的截面函数严格以 c_ 开头,这是区分于时序操作的核心标识。


为什么这样设计?

  1. 语义清晰
    • m_ → **M**oving(时序滚动),c_ → **C**ross-sectional(截面横向),命名直观易记。
  2. 避免混淆
    时序和截面操作在量化逻辑中本质不同(时间维度 vs. 资产维度),前缀区分可减少代码错误。
  3. 平台一致性
    BigQuant 的底层引擎(基于 Pandas/NumPy)通过此约定自动优化计算逻辑(时序操作按资产分组滚动,截面操作按时间点分组聚合)。

注意事项

  1. 并非绝对 100% 覆盖
    • 少数通用函数(如 logabs)无前缀,但它们**不属于时序/截面专用算子**。
    • 部分高级函数可能用其他前缀(如 t_ 表示技术指标),但核心时序/截面操作严格遵循 m_/c_ 规则。
  2. 聚合函数的归属
    • 时序聚合(如 m_sum)属于 m_ 系列,截面聚合(如 c_mean)属于 c_ 系列,与您的描述一致。
  3. 实际代码验证
    在 BigQuant 编辑器中输入 m_ 或 c_ 会触发自动补全,列出所有对应函数(如下图示意):
    https://bigquant.com/doc/static/img/autocomplete.png

总结

类型前缀作用维度典型函数是否符合您的描述
时序算子/聚合函数m_时间维度(单资产历史序列)m_avg, m_std✅ 是
截面算子/聚合函数c_资产维度(单时间点多资产)c_rank, c_norm✅ 是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值