
机器学习与scikit-learn
文章平均质量分 90
机器学习-scikit-learn
文火冰糖的硅基工坊
行路当下,惜缘随缘;
仰望星空,梦在远方;
俯瞰天下,顺道而为;
点亮心灯,照亮周遭。
----贝尔实验室授予杰出技术专家DMTS终身荣誉
展开
-
[机器学习与scikit-learn-51]:模型评估-图解分类模型的评估指标(准确率、精确率、召回率)与代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 混淆矩阵1.1 二分类的混淆矩阵1.2三分类的混淆矩阵1.3 N分类的混淆矩阵1.4 混淆矩阵的作用第2章 准确率、精确率、召回率2.1 准确率/“正确率”:预测结果正确的百分比(只关心预测结果正确的样本,包括负样本)2.2 精确率:预测结果为正例样本中真实为正例的比例(只关心预测结果为正的样本)2.3 召回率:所有真实样本中,判为真实样本的.原创 2022-05-01 17:08:05 · 37200 阅读 · 0 评论 -
[机器学习与scikit-learn-51]:模型评估-图解回归模型的评估指标MSE、MAE、RMSE、R2、RSS与代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 残差residual error1.1 残差的定义1.2 残差的数学表达式1.3 残差计算的几何图形1.4 残差数值的几何图形1.5 残差分析1.6 残差的意义:第2章 平均绝对误差(mean absolute error, MAE)- L1损失2.1 概述2.2 MAE的数学表达式2.3 MAE误差的几何含义2.4 MAE的函数图原创 2022-04-26 18:59:19 · 10517 阅读 · 0 评论 -
[人工智能-综述-10]:模型评估 - 常见的模型评估指标与方法大全、汇总
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 模型评估概述1.1 什么是模型评估1.2 模型评估的类型1.3 过拟合、欠拟合1.4 模型泛化能力第2章 常见的分类模型评估指标2.1 混淆矩阵:2.4 召回率recall:2.5 F1-score:主要用于评估模型的稳健性2.6 AUC指标:主要用于评估样本不均衡的情况2.7 AUC2.8 PR曲线第3章 常见的回归模型评估指原创 2022-04-18 23:14:13 · 42081 阅读 · 0 评论 -
[人工智能-综述-9]:科学计算、大数据分析、人工智能、机器学习、深度学习全面比较
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 scikit-learn是大数据分析还是人工智能工具?1.1 什么是科学计算1.2 计算机科学计算过程:1.3 Python的科学计算库1.4 Phyton的传统的机器学习库scikit-learn第2章 大数据与人工智能的比较2.1 什么是大数据2.2 什么是人工智能2.3 什么是机器学习2.4 什么是深度学习2.5 深度学习的本质2.4原创 2022-04-18 21:12:33 · 41191 阅读 · 0 评论 -
[机器学习与scikit-learn-51]:特征工程-特征选择(降维)-6-一次性过滤-嵌入法
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 嵌入法简介1.1 简介1.2 模型1.3 缺点第2章scikit-learn提供的接口:feature_selection.SelectFromModel2.1 原型2.2 使用条件第3章 代码示例3.1 手工指过滤定门限3.2 交叉验证的分数3.3 通过学习曲线确定最优thres_hold的范围3.4 进一步细化学习曲线,寻找最.原创 2022-04-17 19:55:19 · 1988 阅读 · 0 评论 -
[机器学习与scikit-learn-50]:特征工程-特征选择(降维)-5-二级过滤-特征值与标签之间的关系:F过滤与互信息量法过滤
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 F检验代码示例1.1 过滤条件为02.2 过滤条件为0.01第2章互信息量代码示例前言:卡方检验能够筛选算特征变量与标签变量之间的相关性,卡方过滤用于过滤掉那些与标签标签无关的特征变量。除了卡方检验,类似的还有F检验和互信息量检验。F检验要求输入数据服从正态分布,互信息量用于检查特征与标签之间不确定性的大小,即信息量的大小。从代码的角度来看,卡方.原创 2022-04-10 17:04:21 · 1526 阅读 · 0 评论 -
[机器学习与scikit-learn-49]:特征工程-特征选择(降维)-4-二级过滤-特征值与标签之间的关系:卡方过滤
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言第1章 卡方过滤概述1.1 概述1.2 卡方过滤的基本原理1.3 卡方检验的案例说明第2章 scikit-learn中的卡方过滤2.1 在scikit-learn中,有两种方式实现卡方过滤:2.2 卡方过滤的基本步骤2.3selectKbest +chi2实现卡方过滤2.4chi2独自过滤前言方差过滤,只考虑了不同样本的同一个特征值之间的互...原创 2022-04-10 16:06:12 · 2893 阅读 · 0 评论 -
[机器学习与scikit-learn-48]:特征工程-特征选择(降维)-3-初级过滤:方差过滤法
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 特性选择常见方法1.1 scikit-learn中特征工程1.2 人工过滤第2章 方差过滤2.1 什么是方差2.2scikit-learn的方差过滤:feature_selection.VarianceThreshold第3章 方差过滤对算法的影响3.1方差过滤对KNN的影响3.2方差过滤随机深林的影响前言:当样本的特征的数量太...原创 2022-04-06 10:18:47 · 1691 阅读 · 0 评论 -
[机器学习与scikit-learn-47]:特征工程-sklearn中的数据预处理和特征工程概述
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/123966627目录前言:第1章 机器学习/数据挖掘的一般处理流程第2章 数据预处理该概述2.1 什么是数据预处理2.2 数据预处理的意义2.3 数据预处理的方法第3章sklearn中的数据预处理和特征工程3.1 总体概述3.2 数据预处理与缺失填补(数据预处.原创 2022-04-05 12:58:22 · 2193 阅读 · 0 评论 -
[机器学习与scikit-learn-46]:特征工程-特征选择(降维)-2-常见的特征降维的方法大全
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 特征降维概述1.1 机器学习在实际工作中遇到的难题--维度爆炸1.2 降维的原因1.3 特征降维的目的1.4 什么是特征降维1.5 降维的好处和优点1.6 降维的缺点1.7降维的主要手段与对应的原则1.8特征降维的优化第2章 常见的降维方法简介2.1 按缺失比率删除特征(Missing Value Ratio)2.3 高相关性滤..原创 2022-04-05 10:34:40 · 2621 阅读 · 0 评论 -
[机器学习与scikit-learn-45]:特征工程-特征选择(降维)-1-哈希向量
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:前言:上述模型的方法在文本中单词数量较小时很好用,也很直接,但在有些场景下很难使用,比如分词后的词汇字典表非常大,达到100万+词(不是单字上百万个),此时如果直接使用词频向量或Tf-idf权重向量的方法,那么文本的特征向量的分量太多,占用的内存太大。有可能将内存撑爆。在这种情况下我们该怎么办呢?我们可以应用哈希向量技巧进行降维,哈希向量是一种特征降维的技术手段。无论是词频向量,还是.原创 2022-04-04 15:59:27 · 939 阅读 · 0 评论 -
[机器学习与scikit-learn-44]:特征工程-特征提取(编码)-3-权重向量编码以及代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/123953101目录前言:第1章 概述权重向量概述第2章 代码示例前言:有时候,词频向量中存放的数值是绝对数值,这种绝对数值表示的向量有如下的缺点:(1)不同文章,长短不同,单词的数量自然不同,这样导致不同文章的比较就存现了不公平现象。(2)有些词,虽然出现的次数比较大原创 2022-04-04 14:31:44 · 1200 阅读 · 0 评论 -
[机器学习与scikit-learn-43]:特征工程-特征提取(编码)-2-什么是特征提取以及文本词频向量
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 从文本中提取特征概述1.1 概述1.2 为什么不能采用ASCII编码1.3 什么是特征1.4 什么是特征提取1.5要对文本进行编码,需要遵循几个基本的规则第2章 特征提取方法:词频向量2.1 什么是词频2.1 英文词频向量(CountVectorizer)2.2 中文词频编码第1章 从文本中提取特征概述1.1 概述有时候,给定的样本数据.原创 2022-04-04 14:15:25 · 2181 阅读 · 0 评论 -
[机器学习与scikit-learn-42]:特征工程-特征提取(编码)-1-从字典中提取特征
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 特征提取概述1.1 什么是特征提取1.2 特征提取与特征选项的区别与联系1.3 特征提取的方法第2章字典中提取特征2.1 概述2.2 代码案例分析前言:机器学习算法的输入是样本的多个维度的特征,特征来自于原始样本数据,但有不是原始的样本数据。样本的特征与原始数据之间并非完全等价的,在机器学习算法学习中,大部分生成的原始数据就是特征,然后在解决.原创 2022-04-03 23:42:17 · 1093 阅读 · 0 评论 -
[机器学习与scikit-learn-41]:算法-分类-支持向量机-不同核函数的比较与最佳核函数以及代码演示
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1步骤:导入库第2步骤:四种不同的数据集第3步骤:四种不同的核函数3.1 模型训练与可视化3.2 效果图比较前言:scikit-learn支持多种不同的核函数,实现对线性不可分数据的分类,本文展现不同核函数的效果。第1步骤:导入库import numpy as npimport matplotlib.pyplot as pltfrom ma原创 2022-03-31 08:52:50 · 1616 阅读 · 0 评论 -
[机器学习与scikit-learn-40]:算法-分类-支持向量机-通过3D图像可视化线性不可分数据升维后的线性可分的效果图。
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1步:线性不可分数据1.1 构建线性不可分数据集1.2 构建模型,并进行训练1.3 可视化决策边界边界第2步骤: 数据升维2.1二次方升维2.2 升维效果图2.3 交互式展示升维效果第3步骤:外挂核函数拟合线性不可分数据3.1 建立模型并重新拟合3.2 可视化决策边界前言:低维空间棘手难缠的麻烦事,升到高维空间后就不算个事。..原创 2022-03-31 08:51:52 · 1644 阅读 · 0 评论 -
[机器学习与scikit-learn-39]:环境-Jupter Notebook无法支持3D交互式绘图模式解决办法(No module named ‘ipywidgets‘ jupter)
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录问题描述一、升级jupyterlab二、安装jupyterlab拓展问题描述在练习《python数据手册》中matplotlib部分时,书中提到的魔术方法。% matplotlib notebook(1)无法使用并报错。(2)No module named 'ipywidgets' jupter.一、升级jupyterlabpip install --..原创 2022-03-30 09:14:00 · 3890 阅读 · 1 评论 -
[机器学习与scikit-learn-38]:算法-分类-支持向量机-通过等高线可视化决策边界线和隔离带
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1步骤:导入库第2步骤:创建线性可数据集2.1 创建数据集2.2 可视化数据集第3步骤:创建线性支持向量机3.1 建模模型,并进行训练3.2 获得支持向量3.3 可视化支持向量3.4 生成每个输入的样本点到决策边界的距离第4步骤:通过等高线可视化决策边界与隔离带4.1 什么是网格4.2 堆叠4.3 绘制原始样本和决策边界4.4 绘原创 2022-03-30 09:08:23 · 1577 阅读 · 0 评论 -
[机器学习与scikit-learn-37]:算法-分类-支持向量机-核函数与线性不可分-原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 线性不可分转换成线性可分的手段:升维1.1 何为数据维度?1.2 何为升维1.3升维的功效第2章scikit-learn支持向量机提供的升维核函数2.1scikit-learn SVM kernel函数2.2Linear线性核函数2.3Poly多项式核函数2.4RBF:高斯核函数2.5sigmoid核函数2.6复合核函数...原创 2022-03-29 09:22:20 · 911 阅读 · 0 评论 -
[机器学习与scikit-learn-36]:算法-分类-支持向量机-多项式预处理升维实现线性不可分分类的代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章用线性向量机实现非线性分类的基本思想第2章 代码示例2.1 步骤1:导入库2.2 步骤2:导数数据集2.3 步骤3:构建待多项式预处理的复合模型并进行模型训练2.4 步骤4:可视化训练效果前言:很多时候,原始的分类数据,是线性不可分的,如下图所示:支持向量机可以通过多种方式实现对线性不可分数据的分类。(1)多项式数据预处理=》数据特.原创 2022-03-29 09:20:58 · 970 阅读 · 0 评论 -
[机器学习与scikit-learn-35]:算法-分类-支持向量机-线性分类代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/123800789目录前言:第1步骤:导入库第2步骤:导入数据集并可视化第3步骤:数据的预处理第4步骤:建模模型并训练模型第5步骤:可视化模型预测效果前言:本章通过代码演示支持向量机SVM实现线性分类,并调整不同的超参数,来观察对算法效果的影响。第1步骤:导.原创 2022-03-28 17:32:17 · 863 阅读 · 0 评论 -
[机器学习与scikit-learn-34]:算法-分类-支持向量机SVM的基本简介与基本原理-线性分类
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 支持向量机概述1.1 什么是支持向量机1.2 为什么称为支持向量机1.3 支持向量机功能的强大1.4 支持向量机性能的强大1.5 支持向量机应用广泛1.6SVM是最接近深度学习的机器学习算法。第2章 支持向量机的基本思想(以平面二分类为例)2.1 分类目标与基本思想2.2 不适宜问题2.3 支持向量机的基本思想2.4 支持向量机基于思想的进.原创 2022-03-28 10:35:54 · 1259 阅读 · 0 评论 -
[概率论与数理统计-4]:一元离散随机变量=>样本空间=>古典概率模型(事件、自然数、等概率、均匀分布)
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 一元随机变量的两个方面1.1 随机变量1.2 一元随机变量1.3 随机变量包含两个主要的方面:1.4 什么是概率模型第2章 古典概率型2.1 什么是古典概率2.2 古典概率如何问答随机变量的两个方面2.3 古典概率型判断的依据2.4 古典概率型的概率第3章 排列组合3.1 排列3.2 组合第1章 一元随机变量的两个方面1.1 随机原创 2022-03-25 00:26:55 · 1814 阅读 · 0 评论 -
[[概率论与数理统计-3]:图示常见一元随机变量的概率(密度)函数
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/123618654目录第1章 概率函数、概率分布函数、概率密度函数1.1 引言1.2 概率函数/概率密度函数1.3 概率分布函数的定义1.4 正态密度函数与正态分布函数的区别第2章 常见一元离散型随机变量概率分布(用概率(密度)函数表达)2.1 说明2.2 伯努利(随原创 2022-03-22 09:03:12 · 2853 阅读 · 0 评论 -
[[概率论与数理统计-2]:随机函数、概率、概率函数、概率分布函数
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 随机与非随机事件1.1 确定性事件与不确定性事件(随机事件)第2章随机变量与随机函数2.1 随机变量2.2 基于取值范围的随机变量种类:离散型与连续性随机变量2.3 基于因果关系的随机变量的种类:自变量与因变量2.4 随机函数:自变量与因变量的关系2.5 随机变量的个数:一元随机变量与多元随机变量第3章 单随机变量的概率3.1 引言3.2 概率.原创 2022-03-21 21:53:06 · 3284 阅读 · 0 评论 -
[机器学习与scikit-learn-33]:算法-回归-通过PolynomialFeatures实现数据的升维
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 低纬度空间(二维)的非线性样本数据分布第2章 用线性模型拟合拟合非线性分布数据的困难第3章 对非线性分布数据进行升维(三维空间)3.1 什么是升维3.2 升维的本质3.3sklearn中升维方法第4章 在高纬度实现对低纬度非线性分布数据的线性拟合前言:我们常听说降维打击,这是指,在高维度空间可以轻松地实现对低维度空间的打击。本文讲展示这里...原创 2022-03-21 09:11:00 · 2050 阅读 · 0 评论 -
[机器学习与scikit-learn-32]:算法-回归-普通线性模型拟合非线性分布数据-分箱
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 分箱机制分箱的本质: 用多个线段替代一个直线对目标样本数据进行拟合第2章 代码实现2.1 导入库2.2 创建非线性分布的数据集2.3 用原始数据集进行模型训练2.4 分箱的基本原理2.5 分箱数据预处理建模2.6 用分箱后的数据进行线性模型拟合(10个箱子)2.7 不同箱子对线性模型拟合效果的影响(5个箱子做比较)2.8 如何动态评估.原创 2022-03-20 09:25:17 · 791 阅读 · 0 评论 -
[机器学习与scikit-learn-31]:算法-回归-线性模拟拟合拟合非线性数据-概述
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 什么是线性与非线性关系1.1 描述对象1.2 什么是线性与非线性关系第2章 数据(分布)的线性与非线性2.1 什么是线性与非线性数据(拟合、模拟回归)2.2什么是线性与非线性可分数据(分类、逻辑回归)2.3 分类问题的拟合表达第3章 模型的线性与非线性3.1 线性模型3.2 特定的非线性模型3.3 通用的非线性模型:多项式非线性模型(Polyn.原创 2022-03-20 09:23:58 · 2880 阅读 · 0 评论 -
[机器学习与scikit-learn-30]:算法-回归-普通线性模型拟合非线性分布数据-遇到的问题
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1步骤:导入库第2步骤:生成非线性分布数据集第3步骤:创建普通线性模型并进行拟合第4步骤:可视化拟合效果前言:文本通过代码展现普通的线性模型拟合非线性模型遇到的问题。第1步骤:导入库# 导入所需要的库import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_mod原创 2022-03-19 11:37:08 · 1106 阅读 · 0 评论 -
[机器学习与scikit-learn-29]:算法-回归-普通线性回归LinearRegression拟合线性分布数据的代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 LinearRegression类说明第2章 LinearRegression使用的代码示例2.1 导入库2.2 导数数据集2.3 分割数据集2.4建立模型与进行训练2.5 MSE、MAE评估2.6 R2评估2.7 模型指标分析第1章 LinearRegression类说明fit_intercept: y = kx + b,b就是截距,这里.原创 2022-03-19 11:36:32 · 812 阅读 · 0 评论 -
[机器学习与scikit-learn-28]:算法-回归-评估指标详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 最小二乘的误差公式第2章残差和与MAE2.1 残差与残差和2.2 绝对均值误差MAE (L1误差)第3章 残差平方和与MSE3.1 残差平方和RSS3.2 均方误差MSE(L2误差)第4章 范数与误差第5章 R^2指标5.1MSE和MAE不足5.2 决定系数R2指标第1章 最小二乘的误差公式最小二乘法也可以叫做最小平方和,其目的...原创 2022-03-18 09:08:49 · 1391 阅读 · 0 评论 -
[机器学习与scikit-learn-27]:算法-回归-多元线性回归的几何原理、线性代数原理、本质(去掉激活函数的神经元)
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 回归概述1.1 回归的案例1.2 什么是回归1.3 应用场合1.4 回归算法的种类1.5 线性回归的结果问题的思路1.6 线性回归的本质第2章 多元线性回归2.1 一元线性回归的本质与原理2.2 二元线性回归2.3多元线性回归的几何原理2.5 多元线性回归与深度学习的神经元第3章 最小二乘法求解多维线性拟合的参数3.1 什么最小二..原创 2022-03-18 09:06:44 · 1591 阅读 · 0 评论 -
[机器学习与scikit-learn-26]:算法-聚类-KMeans寻找最佳轮廓系数
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 指定聚类情况系的轮廓系数1.1 非排序的轮廓系数1.2 轮廓系数排序后的展示--横向展示1.3轮廓系数排序后的展示--纵向展示第2章 cluster=4时候的轮廓系数(排序)第3章 不同聚类数情形下的轮廓系数展示3.1 代码3.2 n_cluser=23.3 n_cluser=33.4 n_cluser=43.5 n_cluser=..原创 2022-03-17 08:19:48 · 1671 阅读 · 0 评论 -
[机器学习与scikit-learn-25]:算法-聚类-KMeans的适用范围与评估指标
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章KMeans的适合与不适合场景1.1 KMeans的本质与适用场景1.2 KMeans的不适用场合1.3 不适合场合下的错误聚类第2章 KMeans效果评估面临的问题2.1 概述2.2 KMeans的Inertia指标面临的问题第3章 KMeans效果评估的方法3.1当真实标签已知的时候3.2当真实标签未知的时候:基本思想3.3当...原创 2022-03-17 08:18:01 · 6525 阅读 · 0 评论 -
[机器学习与scikit-learn-24]:算法-聚类-KMeans代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 KMeans类介绍1.1 类参数1.2 类属性1.3 成员函数第2章 代码示例2.1 创建样本数据2.2 显示原始样本数据2.3 显示人为分类的样本数据(带颜色,用于比较)2.4 建立聚类模型并进行训练2.5 可视化训练后的效果2.5 不同聚类类别的比较第1章 KMeans类介绍1.1 类参数lass sklearn.cluste..原创 2022-03-16 07:43:44 · 785 阅读 · 0 评论 -
[机器学习与scikit-learn-23]:算法-聚类-KMeans算法的工作原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 KMeans概述1.1 什么是簇与质心1.2 质心的计算过程第2章 聚合指标2.1 距离和度量方法2.2 聚合的意义2.3Kmeans有损失函数吗?2.4 scikit-learn中KMeans的距离算法第1章 KMeans概述作为聚类算法的典型代表,KMeans可以说是最简单的聚类算法没有之一,那它是怎么完成聚类的呢?1.1 什么是簇与质心..原创 2022-03-16 07:42:38 · 759 阅读 · 0 评论 -
[机器学习与scikit-learn-22]:算法-聚类-无监督学习与聚类基本原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 什么无监督学习1.1 概述1.2 应用场景1.3 常见算法第2章 什么是聚类2.1 概述2.2 聚类与分类的区别2.3 常见的聚类与分类算法比较2.4scikit-learn第1章 什么无监督学习1.1 概述决策树,随机森林,逻辑回归,他们虽然有着不同的功能,但却都属于“有监督学习”的一部分,即是说,模型在训练的时候,即需要特征矩阵X,也需.原创 2022-03-15 18:54:59 · 1034 阅读 · 0 评论 -
[机器学习与scikit-learn-21]:算法-逻辑回归-多项式非线性回归PolynomialFeatures与代码实现
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 scikit-learn对逻辑回归的支持第2章 PolynomialFeatures类参数详解2.1 PolynomialFeatures这个类有 3 个参数:2.2 代码演示第3章 回归代码实现案例第1章 scikit-learn对逻辑回归的支持scikit-learn只提供了对线性逻辑回归模型,对于非线性分布的样本,可以通过PolynomialFea..原创 2022-03-15 18:52:45 · 2450 阅读 · 0 评论 -
[机器学习与scikit-learn-20]:算法-逻辑回归-线性逻辑回归linear_model.LogisticRegression与代码实现
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 scikit-learn线性逻辑回归的实现第2章 linear_model.LogisticRegression类参数详解2.1 类原型2.2 正则化2.3 类参数说明第3章 线性逻辑回归代码示例3.1 步骤1:生成、构建训练数据集3.2 步骤2:构建模型并训练模型3.3 步骤3:可视化模型预测的分类边界第1章 scikit-learn线性逻辑回归的原创 2022-03-14 07:41:46 · 1473 阅读 · 0 评论 -
[机器学习与scikit-learn-19]:算法-逻辑回归-概述与原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 逻辑回归的应用场景第2章 逻辑回顾在机器学习中的位置第3章 逻辑回归与线性回归区分第4章 什么逻辑回归4.1 概述4.2 链接函数与Sigmod第5章 逻辑回顾的数学表达第6章 sigmod函数的本质是概率吗第7章 为什么需要逻辑回归:逻辑回归的优势第8本章 逻辑回归分类8.1 线性回归8.2 非线性回归第1章 逻辑回归的应用场景在银原创 2022-03-14 07:40:18 · 921 阅读 · 0 评论