
人工智能-数学基础
文章平均质量分 84
人工智能-数学基础
文火冰糖的硅基工坊
行路当下,惜缘随缘;
仰望星空,梦在远方;
俯瞰天下,顺道而为;
点亮心灯,照亮周遭。
----贝尔实验室授予杰出技术专家DMTS终身荣誉
展开
-
[数值计算-19]:万能的任意函数的数值求导数方法
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 前言第2章 导数的数值定义第3章 导数的数值计算3.1 定义支持任意一元函数的求导的函数3.2案例1:一元函数13.3案例2:一元函数23.3 多元函数求偏导第1章 前言张量运算的前向运算与参数的自动反向求导都是深度学习最核心的基础。前向运算其实直观,因为有前向运算的函数,一次带入函数的参数,就可以获得前向运算的数值。如 loss =(f(x..原创 2021-09-19 12:53:17 · 3995 阅读 · 0 评论 -
[数值计算-18]:最小二乘的求解法3 - 链式求导与梯度下降法求解loss函数的最优化参数(Python, 超详细、可视化)
链式求导与图梯度下降法原创 2021-09-04 21:59:13 · 1364 阅读 · 0 评论 -
[数值计算-17]:最小二乘法的求解2 - 二元二次线性方程组求解
第3章 最小二乘法3.1 什么是最小二乘法3.2 最小二乘法求解1:“法向量”方程组法 (不推荐)3.3 最小二乘法求解2:梯度下降法最小二乘(二范数)的优点:一阶和二阶导数的存在,使得该残差函数,很容易通过“梯度下降法”获得其最小值和对应的各个参数的值。详细参考:[数值计算-11]:多元函数求最小值 - 偏导数与梯度下降法&Python法代码示例https://blog.csdn.net/HiWangWenBing/a...原创 2021-08-29 18:34:42 · 18540 阅读 · 0 评论 -
[数值计算-16]:最小二乘法的求解1 - 一元二次方程解析法求解
最小二乘法求解法原创 2021-08-29 18:11:16 · 15141 阅读 · 0 评论 -
[数值计算-15]:函数近似值的线性与非线性拟合的原理与Python代码示例
第1章 什么是函数逼近?1.1 抛出问题1:函数插值利用有限的样本数据,发现其内在的规律,并用这个规律预测未来新的数据。(1)单个数据点0次函数通过样本点:唯一确定一个点 y = f(x) = a0 1次直线函数通过样本点:可以有无数 y = f(x) = a1x + a0 2次抛物线函数通过样本点:可以有无数 y = f(x) = a1x^2 + a1x + a0(2)2个数据点0次函数通过样本点:无 1次直线函数通过样本点:唯一直线y = f(x) = a1x + a0...原创 2021-08-29 10:37:33 · 14396 阅读 · 0 评论 -
[数值计算-14]:拉格朗日插值与Python代码实现
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 案例与建模1.1 案例说明1.2 建模与预测第2章 插值2.1 什么是插值2.2 插值的关键是如何构建插值函数!!!第3章 拉格朗日插值3.1拉格朗日插值的基本思想3.2 拉格朗日基函数3.3拉格朗日插值函数3.3 拉格朗日2点插值公式拆解3.4拉格朗日3点插值公式3.5 拉格朗日插值的优缺点第4章拉格朗日通用...原创 2021-08-28 15:51:14 · 27488 阅读 · 0 评论 -
[数值计算-13]:多项式插值、多项式几何图形与线性方程组求解
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 案例与建模1.1 案例说明1.2 建模与预测第2章 插值2.1 什么是插值2.2 插值的关键是如何构建插值函数!!!第3章 多项式插值3.1 什么是多项式插值3.2 多项式函数的唯一性3.3求多项式插值函数的本质是求线性方程组3.4 求线性方程组的解的方法3.5 多项式插值的优缺点第1章 案例与建模1.1 案例说明...原创 2021-08-26 23:13:17 · 13151 阅读 · 1 评论 -
[数值计算-12]:什么是函数逼近:插值、拟合、回归
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 什么是函数逼近?1.1 抛出问题1:函数插值1.2 抛出问题2:函数逼近第2章 函数逼近的基本方法2.1 插值法求插值函数2.2 拟合法求拟合函数第3章 用于函数逼近的常见函数类型3.1 一元函数3.2 多元函数3.3复合函数第1章 什么是函数逼近?1.1 抛出问题1:函数插值利用有限的样本数据,发现其内在的规律,并用这个..原创 2021-08-26 21:42:24 · 13830 阅读 · 0 评论 -
[数值计算-11]:多元函数求最小值 - 偏导数与梯度下降法&Python法代码示例
前置参考:[数值计算-10]:一元非线性函数求最小值 - 梯度下降法&Python法代码示例https://blog.csdn.net/HiWangWenBing/article/details/119832688第1章 多元非线性函数1.1 什么是多元函数设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。记为y=...原创 2021-08-24 23:07:41 · 21939 阅读 · 0 评论 -
[数值计算-10]:一元非线性函数求最小值 - 导数与梯度下降法&Python法代码示例
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 一元非线性函数1.1 什么是函数的元1.2什么是非线性函数1.3非线性函数案例1.4非线性函数的几何图形示意图第2章 函数的导数2.1什么是函数的导数2.2 导数的几何意义2.3导函数2.4函数的凹凸性:什么是凸函数和凹函数?第3章 极大与最值3.1 什么是函数的最小值、极小值?3.2 求极值的重要意义3.3...原创 2021-08-22 12:52:06 · 15292 阅读 · 1 评论 -
[数值计算-9]:一元非线性函数求导数(数值微分)- 解析法与迭代法&Python法代码示例
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119813740目录1.一元n次非线性方程1.1非线性函数1.2 非线性函数案例1.3 非线性函数的几何图形2. 导数与解析法求导数2.1 导数的源头和初心2.2什么导数2.3导函数2.4 解析法求导数3. 迭代法求导数的基本原理...原创 2021-08-20 21:21:20 · 16578 阅读 · 0 评论 -
[数值计算-8]:一元n次非线性方程求解-双点区间-弦截迭代法&Python法代码示例
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录1.1非线性函数1.2 非线性函数案例1.3 非线性函数的几何图形2. 弦截迭代法求非线性方程解的基本原理2.1 基本思想2.2确定误差或收敛条件2.2 迭代过程2.3 玄截法的优缺点3. Python代码示例1.1非线性函数线性函数是一次函数的别称,则非线性函数即函数图像不是一条直线的函数。非线性函数包括指数函数、幂函数、对数函数、多...原创 2021-08-20 15:08:19 · 15815 阅读 · 1 评论 -
[数值计算-7]:一元n次非线性方程求解-单点盲探-牛顿迭代法&Python法代码示例
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119808218目录1.一元n次非线性方程1.1非线性函数1.2 非线性函数案例1.3 非线性函数的几何图形2.扭断迭代法求非线性方程解的基本原理2.1 概述2.2确定误差或收敛条件2.3迭代过程2.3 二分法的优缺点3. Pytho...原创 2021-08-20 09:20:50 · 16327 阅读 · 0 评论 -
[数值计算-6]:一元n次非线性方程求解-双点区间-二分迭代法&Python法代码示例
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:1.一元n次非线性方程1.1非线性函数线性函数是一次函数的别称,则非线性函数即函数图像不是一条直线的函数。非线性函数包括指数函数、幂函数、对数函数、多项式函数等等基本初等函数以及他们组成的复合函数1.2 非线性函数案例y = f(x) = a5*x^5 + a2*x^2+ a0另a5 = 2, a2=3, a0=-20;得到:1.3 非线性函数的几...原创 2021-08-19 21:09:23 · 15415 阅读 · 0 评论 -
[数值计算-5]:一元二次非线性方程求解 - 解析法直接求解
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录1.一元二次非线性方程(直线方程)1.1 什么是一元二次非线性方程(抛物线方程)1.2 非线性函数1.3一元二次非线性方程(抛物线方程)的几何函数1.4一元一次线性函数的特点1.5一元二次非线性函数的重要意义1.6 一元二次线性函数的数值表达(excel)2.一元二次线性函数求解2.1 求一元二次线性方程根2.3 高次非线性方程...原创 2021-08-19 17:47:51 · 15493 阅读 · 0 评论 -
[数值计算-4]:一元一次线性方程求解 - 解析法直接求解
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录1. 什么是一元一次方程(直线方程)2. 一元一次线性方程(直线方程)的几何函数3.一元一次函数的重要意义4.一元一次方程的求解1. 什么是一元一次方程(直线方程)一元一次方程指只含有一个未知数x、未知数的最高次数为1,且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电...原创 2021-08-19 14:59:53 · 16830 阅读 · 0 评论 -
[数值计算-3]:误差的种类、误差传播、误差分析
第1章误差与有效数值1.1 什么是误差实际值与理论值的差,称为误差。1.2 什么是有效数值第2章 误差的分类2.1 模型误差2.2 测量误差备注:几乎所有的测量数据都是不准确的,与真值之间都有存在偏差。2.3 截断误差2.4 四舍五入误差2.5 计算机浮点数长度限制引入的误差这种误差,本质上也是一种四舍五入误差。2.6 人为过失误差是计算过程中,人为错误造成的误差,这种误差是可以避免的,也必须避免。...原创 2021-08-19 11:58:25 · 37216 阅读 · 2 评论 -
[数值计算-2]:数值计算算法好坏的判断标准
数值计算的误差与误差分析原创 2021-08-18 21:56:34 · 16194 阅读 · 0 评论 -
[数值计算-1]:数学建模、科学计算、数值计算的关系
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:前言:数学建模与数值计算的意义数学建模与数值计是利用数学来解决实际理论和工程问题必须的两种工具。深度学习算法和传统的机器学习算法,本质是就是数学建模与数值计算在人工智能领域的应用,数学建模与数值计算能够为理解深度学习的算法提供理论的基础和思维模型的框架。理解深度学习过程与算法原理背后更加通用的力量模型。https://blog.csdn.net/HiWangWenBing/原创 2021-08-18 21:03:11 · 17369 阅读 · 1 评论 -
[人工智能-数学基础-1]:深度学习中的数学地图:计算机、数学、数值计算、数值分析、数值计算、微分、积分、概率、统计.....
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录1. 为什么要谈这个话题?第2章数学2.1 概述定义2.2 数学分支第3章 计算机科学3.1 什么是计算机与计算机科学3.2 研究领域第4章 数值计算方法4.1 什么是数值计算4.2 研究领域1. 为什么要谈这个话题?深度学习本质上是计算机与数学相融合一门技术。深度学习的算法,本质上就是数学。深度学习本质上就是通过数学建模,任何通过.原创 2021-08-15 17:23:57 · 16285 阅读 · 2 评论 -
[人工智能-深度学习-3]:张量tensor是数组Aarry和矩阵Matrix的泛化
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 张量的定义1.1 张量在深度学习中的定义1.2 张量的应用第2章 张量的算数运算第3章 张量的形状运算3.1 合并3.2 张量的分解第4章 点积与乘积4.1张量的点积/内积4.2 张量的乘积/外积 (深度学习用不到)第1章 张量的定义1.1 张量在深度学习中的定义张量(tensor)是多维数组,是向量、矩阵推向更高的维度的一.原创 2021-08-03 21:40:55 · 5719 阅读 · 0 评论 -
Python系列-18]:人工智能 - 数学基础 -8- 概率论基础
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:TBD。。。。。。。。。。。。。。。。https://www.cnblogs.com/gxcdream/p/7597865.html作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:...原创 2021-08-02 23:06:37 · 3653 阅读 · 0 评论 -
Python系列-17]:人工智能 - 数学基础 -7- 微积分、导数与极值、梯度下降法
第2章 导数2.1 导数的定义2.2 导数的几何意义2.3 导数在深度学习中的应用(1)误差或损失函数loss的优化用于求loss函数的极小值,即用于求神经元参数(Wi,Bi)在什么情况下,可以使得损失loss函数的输出值最小。...原创 2021-08-02 22:16:44 · 1601 阅读 · 0 评论 -
[Python系列-16]:人工智能 - 数学基础 -6- 常见数学函数、激活函数大全
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119322764第1部分 函数概述1.1 函数的定义(1)计算机领域函数是指一段可以直接被另一段程序或代码引用的程序或代码。也叫做子程序。(2)数学领域:函数是一种关系,是一种映射规则,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素的原创 2021-08-02 21:41:55 · 2278 阅读 · 0 评论 -
[Python系列-15]:人工智能 - 数学基础 -5- 向量内积(点乘)和外积(叉乘)概念及几何意义
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:TBD。。。。。。。。。。。。。。。。https://www.cnblogs.com/gxcdream/p/7597865.html作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:...原创 2021-08-02 12:36:01 · 1868 阅读 · 1 评论 -
[Python系列-14]:人工智能 - 数学基础 -4- 数组元素的线性代数运算(向量、矩阵运算)
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:第1章 线性代数运算概述1.1 什么是线性代数线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。https://www.runoob.com/numpy/numpy-linear-algebra.html1.2 线性代数运算函数 描述 dot 两个数组的点积,即元素对应相乘。 vdot 两..原创 2021-08-02 00:16:07 · 1775 阅读 · 0 评论 -
[Python系列-13]:人工智能 - 数学基础 -3- 数组元素的统计
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1章 概述第2章 找极值2.1找最大值:mumpy.amax()2.2找最小值:numpy.amin()2.3 极值振幅:numpy.ptp()第3章百分位数统计:numpy.percentile()第4章 数据序列的均值指标4.1 概述4.1 中值:numpy.median()4.2算术平均值:numpy.mean()4.3 加...原创 2021-08-01 16:52:44 · 1575 阅读 · 0 评论 -
[Python系列-12]:人工智能 - 数学基础 -2- 数组元素的算术运算
第2章 数组的算术运算NumPy 算术函数包含简单的加减乘除运算:add(),subtract(),multiply()和divide()。2.1 加法运算:add#代码实例import numpy as np a = np.arange(9, dtype = np.float_).reshape(3,3) print ('第一个数组:')print (a)print ('\n')print ('第二个数组:')b = np.array([10,10,10...原创 2021-08-01 15:38:09 · 1763 阅读 · 0 评论 -
[Python系列-11]:人工智能 - 数学基础 -1- 数组元素的函数运算
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录第1部分 概述第2部分 三角函数第2部分舍入函数2.1 四舍五入的函数:numpy.around()2.2 向下取整numpy.floor()2.3 向上取整:numpy.ceil()第1部分 概述NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等。该操作是对数组中每个元素执行相同的函数运算,并获得每个元素..原创 2021-08-01 15:30:25 · 1512 阅读 · 0 评论 -
[人工智能-综述-6]:为什么说,系统的数学知识学习不是人工智能学习的必要条件
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing本文网址:目录1. 核心观点:2. 关于核心观点的阐述与澄清2.1 关于系统系统学习的澄清? 2.2 实际项目工作不是建高楼,而是补短板2.3 明确企业需要什么样的AI人才2.4 函数、运算都是封装好的,灵活调用/使用更重要2.5 工业界应用以成熟、高效为准2.6 工业界学术界各司其职2.7、理性判断,最贵未必最好。2.8 资料太多,不知从何看起2.9..原创 2021-07-29 15:33:19 · 656 阅读 · 0 评论