
人工智能-PyTorch
文章平均质量分 90
人工智能-Pytorch
文火冰糖的硅基工坊
行路当下,惜缘随缘;
仰望星空,梦在远方;
俯瞰天下,顺道而为;
点亮心灯,照亮周遭。
----贝尔实验室授予杰出技术专家DMTS终身荣誉
展开
-
[Pytorch系列-74]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - pix2pix网络结构与代码实现详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 网络的定义1.1 网络结构1.2代码来源1.3 网络结构代码解读1.4 输入数据集处理代码解读1.5前向运算第2章 网络的训练1.1G生成网络的结构与代码解读1.2D判决网络的结构与代码解读1.3 pix2pix网络整体的优化算法第1章 网络的定义1.1 网络结构1.2代码来源pytorch-CycleGAN-and-p...原创 2021-12-23 21:44:41 · 17291 阅读 · 0 评论 -
[Pytorch系列-64]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix : 有监督图像生成pix2pix的基本原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:第1章 关键参考信息1.1 项目详细论文:Image-to-Image Translation with Conditional Adversarial Networks论文链接:https://arxiv.org/abs/1611.07004代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix1.2 GAN工作原原创 2021-12-20 21:22:25 · 16969 阅读 · 0 评论 -
[Pytorch系列-73]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - Train.py代码详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 Train.py代码1.1 代码路径1.2 关键命令行参数(以CycleGAN为例)第2章 训练代码主要流程(1)获取命令行参数:opt = TrainOptions().parse()(2)设置训练模式下命令行参数(3)创建数据集:dataset = create_dataset(opt)(4)创建模型:model = create_model(o...原创 2021-12-23 10:04:02 · 3535 阅读 · 0 评论 -
[Pytorch系列-72]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型训练CycleGAN模型
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122071545第1章 概述1.1 代码架构与总体思路[Pytorch系列-63]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 代码总体架构_文火冰糖(王文兵)的博客-CSDN博客作者主页(文火冰糖的硅基工坊):文火冰糖(...原创 2021-12-23 09:54:16 · 19767 阅读 · 3 评论 -
[Pytorch系列-71]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型训练pix2pix模型
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122061704目录第1章 概述1.1 代码架构与总体思路1.2 本章基本思路1.3 训练方式第2章 测试步骤第1步:下载或克隆pytorch-CycleGAN-and-pix2pix所有代码第2步:切换当前目录第3步:安装依赖文件(可视化工具)第4步:下载pi原创 2021-12-23 00:15:28 · 19174 阅读 · 8 评论 -
[Pytorch系列-69]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - test.py代码详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:第1章 pix2pix测试代码1.1 代码路径.\pytorch-CycleGAN-and-pix2pix\test1.2 关键命令行参数-dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_pix2pix第2章 测试代码主要流程(1)获取命令行参数:opt = Tes原创 2021-12-22 08:55:33 · 18765 阅读 · 1 评论 -
[Pytorch系列-70]:开发环境 - 可视化工具visdom安装与使用方法
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 概述1.1 概述1.2 工作原理第2章 安装与启动2.1 安装2.2 启动后台visdom server2.3 启动前台IE显示第3章 使用:通过pytorch代码可视化信息3.1 导入库3.2 实例化一个Visdom窗口3.3 通过wind对象可视化图像第1章 概述1.1 概述在深度学习领域,模型训练是一个必须的过程,因此常常需要实原创 2021-12-22 09:33:18 · 17570 阅读 · 0 评论 -
[Pytorch系列-68]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型测试CycleGAN模型
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122061704目录第1章 概述1.1 代码架构与总体思路1.2 本章基本思路第2章 测试步骤第1步:下载或克隆pytorch-CycleGAN-and-pix2pix所有代码第2步:切换当前目录第3步:安装依赖文件(可视化工具)第4步:下载CycleGAN数据集原创 2021-12-22 08:03:24 · 17212 阅读 · 4 评论 -
[Pytorch系列-66]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型测试pix2pix模型
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 概述1.1 代码架构与总体思路1.2 本章基本思路第2章 测试步骤第1步:下载或克隆pytorch-CycleGAN-and-pix2pix所有代码第2步:切换当前目录第3步:安装依赖文件(可视化工具)第4步:下载pix2pix数据集第5步:下载预训练模型第6步:模型测试第7步效果展示第1章 概述1.1 代码架构与总体思路[Pyto.原创 2021-12-21 16:24:05 · 17071 阅读 · 2 评论 -
[Pytorch系列-65]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 无监督图像生成CycleGan的基本原理
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 什么是CycleGan网络的图像转换1.1 项目在github上的源代码1.2图像转换实例1.3图像转换的总体共性第2章CycleGan图像转换的基本原理2.1CycleGan网络的目标2.2 CycleGAN名称的由来2.3CycleGan网络的基本架构2.4CycleGan网络的基本工作过程2.5CycleGan网络的训练 -生成...原创 2021-12-21 09:56:26 · 17054 阅读 · 0 评论 -
[Pytorch系列-67]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 使用预训练模型进行测试pix2pix模型
第4章 代码运行4.1 Jupter运行pix2pix代码(1)下载或克隆pytorch-CycleGAN-and-pix2pix所有代码!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix也可以通过Windows浏览器下载:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix备注:需要把代码下载或拷贝到jupter的工作目录中。...原创 2021-12-22 00:06:05 · 16972 阅读 · 0 评论 -
[Pytorch系列-63]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - 代码总体架构与总体学习思路
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 理论概述1.1普通GAN, pix2pix, CycleGAN和pix2pixHD的演变过程第2章 CycleGAN-and-pix2pix代码下载2.1 github代码链接2.2 github使用说明2.3 代码下载第3章CycleGAN-and-pix2pix代码代码结构3.1 目录结构3.2 图片转换的两大功能3.3 启动程序的三种方法..原创 2021-12-20 07:36:24 · 3388 阅读 · 0 评论 -
[Pytorch系列-62]:生成对抗网络GAN - 基本原理 - 自动生成手写数字案例分析
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:第1章 基本原理https://blog.csdn.net/HiWangWenBing/article/details/121878299https://blog.csdn.net/HiWangWenBing/article/details/121878299第2章 准备条件import osimport numpy as npimport mathimport random原创 2021-12-13 21:53:41 · 2031 阅读 · 3 评论 -
[Pytorch系列-61]:循环神经网络 - 中文新闻文本分类详解-3-CNN网络训练与评估代码详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 预备知识1.1 业务概述1.2 CNN网络1.3CNN网络与LSTM网络的区别1.4 LSTM网络的代码第2章 代码准备 (Jupter)2.1 代码与数据集下载2.2 导入库2.3系统配置第3章 构建数据集3.1 构建单词表API3.2 定义构建数据集API3.3 构建三大数据集3.4 构建迭代器第4章 构建模型:CNN网络..原创 2021-12-09 00:22:46 · 3006 阅读 · 3 评论 -
[Pytorch系列-60]:循环神经网络 - 中文新闻文本分类详解-2-LSTM网络训练与评估代码详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 预备知识1.1 业务概述1.2 LSTM网络第2章 代码准备 (Jupter)2.1 代码与数据集下载2.2 导入库2.3系统配置第3章 构建数据集3.1 构建单词表API3.2 定义构建数据集API3.3 构建三大数据集3.4 构建迭代器第4章 构建模型:LSTM4.1 定义模型类4.2 实例化模型并显示模型结构4.3 初.原创 2021-12-08 22:07:40 · 3190 阅读 · 1 评论 -
[Python系列-26]:importlib - 动态导入其他python模块库
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/121777798目录第1章 模块导入概述1.1 概述1.2 模块的作用第2章导入其他模块程序的方式2.1 import 文件名2. 2from-import 语句2.3 动态导入module第1章 模块导入概述1.1 概述以文件的方式组织各种程序是大多...原创 2021-12-07 21:08:53 · 1841 阅读 · 0 评论 -
[Python系列-25]:argparse --- 命令行选项、参数解析器
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 概述1.1 概述1.2 库1.3 命令行案例第2章 ArgumentParser的使用2.1 创建ArgumentParser对象2.2 添加命令行参数:add_argument()方法2.3 输入带参数的命令行2.4 解析输入的参数第1章 概述1.1 概述argparse模块可以让人轻松编写用户友好的命令行接口。程序定义它需要的...原创 2021-12-07 19:48:39 · 982 阅读 · 0 评论 -
[Python系列-24]:环境 - 基于已有Python可执行文件,创建PyCharm工程文件
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录1. 需求分析2. 创建过程2.1 把文件copy到PycharmProjects目录中2.2 创建一个新的PycharmProjects工程2.3 配置该工程的解释器(选用已有解释器/python环境)2.4 配置命令行参数2.5 执行目标程序1. 需求分析从github或其他途径,下载了一个在命令行下可执行的python项目(不包含PyCharm工程配置).原创 2021-12-05 12:02:22 · 1452 阅读 · 0 评论 -
[Python系列-23]:WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:1. 出错提示无论是通过pip3,还是通过conda,死活就是安装不上,总是说出错。其实就是说连接超时,下载不了安装包。检查网络,也是正常的。2. 进一步的尝试国内网站pip install sklearn -i http://pypi.douban.com/simple阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学原创 2021-12-05 11:13:49 · 1843 阅读 · 0 评论 -
[Pytorch系列-59]:循环神经网络 - 中文新闻文本分类详解-1-业务目标分析与总体架构
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 业务分析第2章 总体架构与建模第3章 数据集分析3.1 数据集的种类与大小3.2 数据集的内容3.3 数据集的预处理第4章 词向量选择分析第5章 模型选择第6章 开发工具第7章 代码结构分析第1章 业务分析1.1 本文的业务目标给定一个限定长度的新闻文本标题,判断其属于哪种类型的新闻,主要的新闻类型有:(0)finance:财经(1原创 2021-12-06 22:29:54 · 1608 阅读 · 0 评论 -
[Pytorch系列-58]:循环神经网络 - 词向量的自动构建与模型训练代码示例
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章代码编写前的准备1.1 理论前提1.2 业务说明1.3pytorch库1.4 pytorch词向量表nn.Embedding第2章 代码实现2.1 文本数据2.2 构建训练数据2.3 前向运算模型构建2.4 反向传播模型定义2.4 模型训练2.5 模型测试第1章代码编写前的准备1.1 理论前提[人工智能-深度学习-56]:循环...原创 2021-12-05 10:15:02 · 1426 阅读 · 0 评论 -
[Pytorch系列-57]:循环神经网络 - gensim.models.word2vec参数详解与构建词向量模型
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章gensim概述第2章gensim.models.word2vec参数详解第3章 使用gensim.models.word2vec构建向量模型3.0 前提3.1 语料库3.2 创建并训练模型3.3 对相识度单词进行预测第1章gensim概述Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量...原创 2021-12-04 22:52:22 · 1764 阅读 · 0 评论 -
[Pytorch系列-56]:循环神经网络 - word2vec词向量表Embedding/Glove的定义与读访问
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章Embedding词嵌入概述第2章 torch.nn.Embedding 的使用说明第3章torch.nn.Embedding代码实例3.1 前提条件3.2 定义单词到索引的映射表(字典)3.3 自定义一个采用默认初始化的词向量表3.4 从词向量实例化后的表中读取词n个向量第4章 Glove()预定义的词向量数据集代码实例4.1 概述4.2 定义G..原创 2021-12-03 22:28:39 · 1471 阅读 · 0 评论 -
[Pytorch系列-55]:循环神经网络 - 使用LSTM网络对股票走势进行预测
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 LSTM神经网络理论基础第2章 业务说明2.1 业务说明2.2 环境准备第3章 构建训练和测试数据集3.1 下载并查看股票数据3.2根据序列的长度, 把数据集,构建成序列数据集3.3划分训练集,验证集3.4构造数据迭代器dataloader第4章 构建LSTM网络4.1 定义网络4.2 实例化网络4.3 loss和优化器第5章 ...原创 2021-12-01 21:49:34 · 3530 阅读 · 9 评论 -
[Pytorch系列-54]:循环神经网络 - torch.nn.GRU()参数详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/121644547目录第1章 GRU基本理论第2章torch.nn.GRU类的参数详解2.1 类的原型2.2 类的参数:用于构建LSTM神经网络实例第3章 前向传播输入详解3.1 前向传播的格式3.2 input的格式3.3h_0的格式3.4c_0的格...原创 2021-11-30 23:42:24 · 7188 阅读 · 1 评论 -
[Pytorch系列-53]:循环神经网络 - torch.nn.LSTM()参数详解
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:第1章 LSTM基本理论[人工智能-深度学习-52]:RNN的缺陷与LSTM的解决之道_文火冰糖(王文兵)的博客-CSDN博客作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 RNN的缺陷1.1 RNN的前向过程1.2RNN反向求梯度过程1.2 梯度爆炸(每天进一步一点点,N天后,你就会腾飞)1.3 梯度弥散/消失(每天堕落一点点,原创 2021-11-30 23:18:24 · 1954 阅读 · 0 评论 -
[Pytorch系列-52]:循环神经网络RNN - 全连接网络与RNN网络在时间序列数据集上拟合的比较
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 概述1.1 业务需求概述1.2 业务分析1.3 导入库第1章 数据集1.1 数据集概述1.2 从文件中读取数据1.3 提取有效数据第2章 全连接网络的拟合2.1 定义全连接网络2.2 定义loss与优化器2.3 训练前准备2.4 开始训练2.5 loss显示2.6 结果分析第3章RNN网络的拟合3.1 定义RNN网络..原创 2021-11-25 00:10:56 · 16107 阅读 · 1 评论 -
[Pytorch系列-51]:循环神经网络RNN - torch.nn.RNN类的参数详解与代码示例
第1章 RNN神经网络的理论基础https://blog.csdn.net/HiWangWenBing/article/details/121387285https://blog.csdn.net/HiWangWenBing/article/details/121387285第2章torch.nn.RNN类2.1原型2.2案例2.3 解读(1)input_size:输入样本的向量长度假如在NLP中,需要把一个单词输入到RNN中,而这个单词的向量化编码是300...原创 2021-11-24 17:44:09 · 19140 阅读 · 0 评论 -
[人工智能-深度学习-49]:循环神经网络 - RNN与NLP的关系以及RNN在人工神经网络中的位置
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:第1章 NLP自然语言处理概述1.1 什么是NLP1.2 自然语言处理的主要功能1.3 自然语言发展阶段1.3自然语言处理的基础框架第2章 NLP的处理流程2.1NLP的一般处理流程2.2结构化机器学习模型2.3 学习模型第3章 NLP的语言模型与RNN3.1 什么是语言模型3.2NLP语言模型在NLP中的位置3.3 RNN/L...原创 2021-11-20 12:48:10 · 16575 阅读 · 0 评论 -
[人工智能-深度学习-48]:循环神经网络 - RNN是循环神经网络还是递归神经网络?
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录前言:一、什么是RNN二、什么是循环神经网络RNN三、什么是递归神经网络RNN前言:这是一个很容易混淆的概念,网上充斥了大量混用的情形,在学习RNN之前,我们不妨先做个简单的澄清。一、什么是RNNNN表示神经网络neural network,关键什么是"R"?实际上,在深度学习领域,R有两种情形:(1)Recurrent Neural Network =原创 2021-11-17 16:59:33 · 16308 阅读 · 0 评论 -
[人工智能-深度学习-47]:卷积神经网CNN+循环神经网络RNN与组合电路+时序电路的比较
第1章 计算机数字电路的基本单元1.1 计算机数字电路1.2 组合电路1.3 时序电路RRN: 必须等前一个序列完成,才能进行下一步,因为无法并行组合电路CNN, 时序电路RNN图片分类CNN, RNN 一句话分类。...原创 2021-11-17 00:37:25 · 16031 阅读 · 1 评论 -
[Pytorch系列-50]:卷积神经网络 - FineTuning的统一处理流程与软件架构 - Pytorch代码实现
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/121312731第1章 关于Fine Tuning与Transfer Trainning概述1.1 理论基础[人工智能-深度学习-46]:FineTuning(微调)、Transfer Trainning(迁移学习)的理论基础与深度解析_文火冰糖(王文兵)的博客-CSDN博客第1张 前原创 2021-11-16 20:49:21 · 15484 阅读 · 0 评论 -
[Pytorch系列-49]:卷积神经网络 - 迁移学习的统一处理流程与软件架构 - Pytorch代码实现
第3章 构建统一的软件架构(Pytorch版本)3.1 输入数据集与数据预处理3.2 前向网络架构的定义3.3 反向计算的定义3.4 前向预测与反向训练3.5 测试与验证原创 2021-11-16 19:19:17 · 15287 阅读 · 0 评论 -
[Pytorch系列-48]:如何查看和修改预定义神经网络的网络架构、网络参数属性
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章FineTuning、Transfer Trainning的理论基础与深度解析第2章查看预定义神经网络的网络架构2.1 前置条件2.2 生成预定义网络实例2.3 显示网络结构2.4查看网络的内部特定结构以及对应的名称第3章查看预定义神经网络的参数3.1查看模型参数的名称以及结构3.2 查看模型全部参数的结构以及当前的数值3.3无名查看模型参...原创 2021-11-15 20:42:36 · 16160 阅读 · 0 评论 -
[人工智能-深度学习-46]:FineTuning(微调)、Transfer Trainning(迁移学习)的理论基础与深度解析
第1张 前言:常见的工程诉求与特点(1)数据集欠缺个人的数据集小,无法提供向ImageNet这样的大数据集,但又想利用在ImageNet上训练的模型好的模型,为我所用,即基于在一些知名的数据集上训练好的模型,在进一步的训练,以满足自己的应用场景的需求,而无需重头开始训练。(2)分类数多变个人特定的应用,分类的种类与Image(1000种分类)等知名数据集的分类的种类不同,我们想在已经训练好模型的基础上,做适当的重新训练,以支持我们自己的分类数目,如100分类。(3)防止过度训练,即过..原创 2021-11-14 16:05:34 · 16663 阅读 · 0 评论 -
[人工智能-深度学习-45]:开发环境 - Python、Anaconda、Jupter、Pycharm统一开发环境架构
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:...原创 2021-11-13 23:15:18 · 14984 阅读 · 0 评论 -
[人工智能-深度学习-44]:开发环境 - Anaconda的目录结构与SourceInsight工程
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章 前言第2章Anaconda目录结构2.1Anaconda的安装目录2.2Anaconda目录结构第3章 第三方代码结构第4章 虚拟环境的目录结构4.1 根目录4.2 目录结构第5章 SourceInsight建立多个学习工程5.1Source Insight(4.00.0096)激活详解5.2基本建议5.3工程源文件组成第1...原创 2021-11-13 21:47:49 · 16514 阅读 · 0 评论 -
[Pytorch系列-47]:工具集 - torchvision.transforms.Normalize和ToSensor的深入详解
6.1 Pytorch的实现案例(1) 规范化的函数在PyTorch团队专门开发的视觉工具包torchvision中,提供了常见的数据预处理操作,封装在transforms类中。transforms类涵盖了大量对Tensor和对PIL Image的处理操作,其中,包含了对张量进行归一化的transforms.normalize()函数,它的形参包括mean、std等,其手册中对函数和源码的介绍如下图:transforms.Normalize(mean=[0.485, 0....原创 2021-11-13 19:17:47 · 16445 阅读 · 0 评论 -
[人工智能-深度学习-43]:输入预处理 - 规范化Normalization、标准化Standardization、正态分布、算术平均、方差
第1章 多维数据输入时遇到的困境(为什么要标准化、规范化数据集)1.1 多维输入的困境在现实生活中,一个目标变量(Yi)可以认为是由多维特征变量(x)影响和控制的。如上图左图中的X1_i,X2_i,X3_i ,其中i = 0,1,2,3......这些特征变量的量纲和数值的量级就会不一样,比如x1_i = 10000,x2_i= 10,x3_i= -0.5.可以很明显的看出特征x1和x2、x3存在量纲的差距;但不表明,X1_i对神经网络输出的影响是X2_i对神经网络输出的影响...原创 2021-11-13 09:19:47 · 18072 阅读 · 1 评论 -
[Pytorch系列-46]:卷积神经网络 - 用GPU训练ResNet+CIFAR100数据集
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/121072835前言:ResNet网络详解(1)LeNet网络详解[人工智能-深度学习-38]:卷积神经网络CNN - 常见分类网络- ResNet网络架构分析与详解_文火冰糖(王文兵)的博客-CSDN博客https://blog.csdn.net/HiWangWenBing/arti原创 2021-11-13 08:56:46 · 20118 阅读 · 2 评论