Multiple View Geometry(多视图几何)学习笔记(6)—二次曲线的其他性质&不动点与直线

          二次曲线的其他性质&不动点与直线

  现在先介绍点、线和二次曲线之间的一种被称为配极的重要几何关系。
1.极点 一 极线关系

  点 x x x和二次曲线 C C C定义一条直线 l = C x l= Cx l=Cx l l l称为 x x x关于 C C C的极线,而点 x x x称为 l l l关于 C C C极点

  • x x x关于二次曲线 C C C的极线 l = C x l =Cx l=Cx C C C交于两点。 C C C的过这两点的两条切线相交于 x x x。其关系如下图:
            图1

图 1 极 点 — 极 线 关 系 图 图1极点—极线关系图 1线

  • 如果点 x x x C C C上 , 则它的极线就是二次曲线过 x x x点的切线。

定义 1对射 I P 2 IP^2 IP2点到 I P 2 IP^2 IP2线的可逆映射并用一个 3X3 非奇异矩阵 A A A表示为 l = A x l = Ax l=Ax

  • 共轭点  如果点 y y y在极线 l = C x l = Cx l=Cx上,则 y T l = y T C x = 0 y^Tl=y^TCx=0 yTl=yTCx=0。满足 y T C x = 0 y^TCx=0 yTCx=0的任何两点 x x x y y y称关于二次曲线 C C C共轭。
  • 如果 x x x y y y的极线上 , 那么 y y y也在 x x x的极线上。

2.二次曲线的分类

二次曲线的射影标准形式

  任何二次曲线都射影等价于一个由对角矩阵表示的二次曲线。二次曲线 D D D最终被变为具有矩阵 d i a g ( ε 1 , ε 2 , ε 3 ) diag(\varepsilon _{1},\varepsilon _{2},\varepsilon _{3}) diag(ε1,ε2,ε3)的二次曲线,其中 ε i = ± 1 \varepsilon _{i}=\pm 1 εi=±1 0 0 0

对角线方程二次曲线类型
( 1 , 1 , 1 ) (1,1,1) (1,1,1) x 2 + y 2 + w 2 = 0 x^2+y^2+w^2=0 x2+y2+w2=0假二次曲线——无实点
( 1 , 1 , − 1 ) (1,1,-1) (1,1,1) x 2 + y 2 − w 2 = 0 x^2+y^2-w^2=0 x2+y2w2=0
( 1 , 1 , 0 ) (1,1,0) (1,1,0) x 2 + y 2 = 0 x^2+y^2=0 x2+y2=0单个实点 ( 0 , 0 , 1 ) T (0,0,1)^T (0,0,1)T
( 1 , − 1 , 0 ) (1,-1,0) (1,1,0) x 2 − y 2 = 0 x^2-y^2=0 x2y2=0两条直线 x = ± y x=\pm y x=±y
( 1 , 0 , 0 ) (1,0,0) (1,0,0) x 2 = 0 x^2=0 x2=0单条直线 x = 0 x=0 x=0计两次

二次曲线的仿射分类

  在欧氏几何中, (非退化或真)二次曲线可以分为双曲线、椭圆和抛物线。在射影几何中三种类型的二次曲线与 l ∞ l_{\infty } l的关系如下图所示:
           图2

图 2 点 二 次 曲 线 的 仿 射 分 类 图2点二次曲线的仿射分类 2线仿

  图2中,二次曲线是 ( a ) (a) (a)椭圆, ( b ) (b) (b)抛物线, ( c ) (c) (c)双曲线。它们与 l ∞ l_{\infty } l的关系 : ( a ) (a) (a)无实交点、 ( b ) (b) (b)相切(2 点接触)、 ( c ) (c) (c)有 2 个实交点。

3.不动点与直线

  变换的一个特征矢量对应一个不动点 ,因为对于特征值 λ \lambda λ 及其对应的特征矢量 e e e有:
H e = λ e He=\lambda e He=λe

  而 e e e λ e λe λe表示同一点。类似的推导可以用于不动直线,它对应于 H T H^T HT的特征矢量。

欧氏矩阵

  两个不动理想点是虚圆点 I I I J J J组成的复共轭对,相对应的特征值是: { e i θ , e − i θ } \begin{Bmatrix} e^{i\theta } ,& e^{-i\theta }\end{Bmatrix} {eiθ,eiθ},这里 θ \theta θ是旋转角。对应予特征值 l l l 的第三个特征矢量,称为极点。欧氏变换等价与绕该点转 θ \theta θ角的纯旋转并且没有平移。
  一种特殊的情况是纯平移(即 θ = 0 θ=0 θ=0) 。 这时特征值三重退化,穷远线点点不动,且有一束过点 ( t x , t y , 0 ) T (t_x , t_ y , 0)^T (txty,0)T的不动直线,该点对应于平移方向。

相似矩阵

  两个不动理想点仍是虚圆点,特征值是: { 1 s e i θ s e − i θ } \begin{Bmatrix} 1&se^{i\theta } & se^{-i\theta }\end{Bmatrix} {1seiθseiθ}。相似变换的作用可以理解为绕它的有限不动点的旋转和取 s s s 为因子的均匀缩放。注意虚圆点的特征值仍然表征旋转角。

仿射矩阵

  两个不动理想点可以是实或复共轭的,但在任何一种情况下,过这些点的不动直线 l ∞ = ( 0 , 0 , 1 ) T l_{\infty }=(0,0,1)^T l=0,0,1T是实的。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不放弃的蜗牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值