1.什么是 Faster R-CNN?
Faster R-CNN(Region-based Convolutional Neural Network) 是 目标检测(Object Detection) 领域的一种 双阶段(Two-Stage) 深度学习方法,由 Ross Girshick 等人于 2015 年提出。
相比于 YOLO(单阶段检测),Faster R-CNN 采用 区域提议网络(RPN, Region Proposal Network) 生成候选框,并使用 CNN 进行分类和回归,在 精度 上明显优于 YOLO 和 SSD,但速度较慢,适用于离线检测任务。
2.Faster R-CNN 的核心特点
1) 双阶段检测:
- 第一阶段:RPN 生成区域候选框(Region Proposal)。
- 第二阶段:对候选框进行 分类(Classification) 和 回归(Regression)。
2) 高精度:相比 YOLO、SSD,Faster R-CNN 由于采用 RPN 进行目标提议,在小目标检测上表现更佳。
3) 端到端训练:整个检测流程可以端到端优化,提高检测效果。
4) 适用于高精度应用:如医学影像分析、遥感图像目标检测等。
3.Faster R-CNN 的工作流程
Faster R-CNN 由 四个主要部分 组成:
1) 卷积特征提取器(Backbone CNN)
- 使用 ResNet、VGG 等深度 CNN 提取特征图(Feature Map)。
2) 区域提议网络(RPN)
- RPN 生成