特征函数的性质: 若 E ( X l ) E(X^l) E(Xl) 存在,则 X X X 的特征函数 φ ( t ) \varphi(t) φ(t) 可 l l l 次求导,且对 1 ⩽ k ⩽ l 1\leqslant k\leqslant l 1⩽k⩽l 有
φ ( k ) ( 0 ) = i k E ( X k ) \varphi^{(k)}(0)={\rm i}^kE(X^k) φ(k)(0)=ikE(Xk)
上式提供了一条求随机变量的各阶矩的途径,特别可用下式去求数学期望和方差
E ( X ) = φ ′ ( 0 ) i E(X)=\frac{\varphi'(0)}{\rm i} E(X)=iφ′(0)
V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 \begin{aligned} Var(X)&=E(X^2)-[E(X)]^2\\ &=-\varphi''(0)+(\varphi'(0))^2 \end{aligned} Var(X)=E(X2)−[E(X)]2=−φ′′(0)+(φ′(0))2