使用特征函数计算随机变量的数学期望和方差

特征函数的性质: E ( X l ) E(X^l) E(Xl) 存在,则 X X X 的特征函数 φ ( t ) \varphi(t) φ(t) l l l 次求导,且对 1 ⩽ k ⩽ l 1\leqslant k\leqslant l 1kl

φ ( k ) ( 0 ) = i k E ( X k ) \varphi^{(k)}(0)={\rm i}^kE(X^k) φ(k)(0)=ikE(Xk)

上式提供了一条求随机变量的各阶矩的途径,特别可用下式去求数学期望和方差

E ( X ) = φ ′ ( 0 ) i E(X)=\frac{\varphi'(0)}{\rm i} E(X)=iφ(0)

V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 \begin{aligned} Var(X)&=E(X^2)-[E(X)]^2\\ &=-\varphi''(0)+(\varphi'(0))^2 \end{aligned} Var(X)=E(X2)[E(X)]2=φ(0)+(φ(0))2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值