大数定理

切比雪夫大数定理:
{ X n } \{X_n\} {Xn} 为一列两两不相关的随机变量序列,若每个 X i X_i Xi 的方差存在,且有共同的上界,即 V a r ( X i ) ⩽ c , i = 1 , 2 , ⋯ Var(X_i)\leqslant c,i=1,2,\cdots Var(Xi)c,i=1,2,,则 { X n } \{X_n\} {Xn} 服从大数定理,即对任意的 ε > 0 \varepsilon>0 ε>0,成立:

lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε ) = 1 \lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)\right|<\varepsilon\right)=1 nlimP(n1i=1nXin1i=1nE(Xi)<ε)=1

马尔可夫大数定律:

马尔科夫条件:

1 n 2 V a r ( ∑ i = 1 n X i ) → 0 \frac{1}{n^2}Var\left(\sum_{i=1}^nX_i\right)\to 0 n21Var(i=1nXi)0

定理内容:

对随机变量序列 { X n } \{X_n\} {Xn},若成立马尔可夫条件,则 { X n } \{X_n\} {Xn} 服从大数定理,即对任意的 ε > 0 \varepsilon>0 ε>0,成立:

lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε ) = 1 \lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)\right|<\varepsilon\right)=1 nlimP(n1i=1nXin1i=1nE(Xi)<ε)=1


切比雪夫大数定理和马尔可夫大数定律区别在于条件不同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值