切比雪夫大数定理:
设
{
X
n
}
\{X_n\}
{Xn} 为一列两两不相关的随机变量序列,若每个
X
i
X_i
Xi 的方差存在,且有共同的上界,即
V
a
r
(
X
i
)
⩽
c
,
i
=
1
,
2
,
⋯
Var(X_i)\leqslant c,i=1,2,\cdots
Var(Xi)⩽c,i=1,2,⋯,则
{
X
n
}
\{X_n\}
{Xn} 服从大数定理,即对任意的
ε
>
0
\varepsilon>0
ε>0,成立:
lim n → ∞ P ( ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε ) = 1 \lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)\right|<\varepsilon\right)=1 n→∞limP(∣∣∣∣∣n1i=1∑nXi−n1i=1∑nE(Xi)∣∣∣∣∣<ε)=1
马尔可夫大数定律:
马尔科夫条件:
1 n 2 V a r ( ∑ i = 1 n X i ) → 0 \frac{1}{n^2}Var\left(\sum_{i=1}^nX_i\right)\to 0 n21Var(i=1∑nXi)→0
定理内容:
对随机变量序列 { X n } \{X_n\} {Xn},若成立马尔可夫条件,则 { X n } \{X_n\} {Xn} 服从大数定理,即对任意的 ε > 0 \varepsilon>0 ε>0,成立:
lim n → ∞ P ( ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε ) = 1 \lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)\right|<\varepsilon\right)=1 n→∞limP(∣∣∣∣∣n1i=1∑nXi−n1i=1∑nE(Xi)∣∣∣∣∣<ε)=1
切比雪夫大数定理和马尔可夫大数定律区别在于条件不同