可偏导不一定连续的例子

可偏导不一定连续的例子


f ( x , y ) = { x y x 2 + y 2 , ( x , y ) ≠ ( 0 , 0 )      0 , ( x , y ) = ( 0 , 0 ) } (1) f(x,y)=\left\{\begin{array}{l} \frac{xy}{x^2+y^2}&, &(x,y)\ne(0,0)\\ \ \ \ \ 0&,&(x,y)=(0,0)\end{array} \right\}\tag{1} f(x,y)={x2+y2xy    0,,(x,y)=(0,0)(x,y)=(0,0)}(1)
可偏导的证明
f x ( 0 , 0 ) = lim ⁡ Δ x → 0 f ( 0 + Δ x , 0 ) − f ( 0 , 0 ) Δ x = lim ⁡ Δ x → 0 0 ( Δ x ) 2 − 0 Δ x = 0 (2) \begin{aligned} f_x(0,0)& = \lim\limits_{\Delta x \to 0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}\\ & =\lim\limits_{\Delta x \to 0}\frac{\frac{0}{(\Delta x)^2}-0}{\Delta x}\\ & =0 \tag{2} \end{aligned} fx(0,0)=Δx0limΔxf(0+Δx,0)f(0,0)=Δx0limΔx(Δx)200=0(2)
同理, f y ( 0 , 0 ) = 0 f_y(0,0)=0 fy(0,0)=0.所以, f ( x , y ) f(x,y) f(x,y)存在偏导数
不连续的证明
lim ⁡ x → 0 t → k x f ( x , y ) = lim ⁡ x → 0 k x 2 x 2 + k 2 x 2 = k 1 + k 2 (3) \begin{aligned} \lim\limits_{\tiny\begin{array}{l}x\to0\\t\to kx \end{array}}f(x,y)&= \lim\limits_{\tiny x\to 0}\frac{kx^2}{x^2+k^2x^2}\\ &=\frac{k}{1+k^2}\tag{3} \end{aligned} x0tkxlimf(x,y)=x0limx2+k2x2kx2=1+k2k(3)
所以 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)处不连续.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值