线性SDE的解法
文章目录
基础知识
Class D, Class DL
T = { T : T 为停时,且 P ( T < ∞ ) = 1 } , T a = { T : T 为停时,且 P ( T ≤ a ) = 1 } \mathscr{T}=\{T:T为停时,且P(T<\infty)=1\},\mathscr{T}_a=\{T:T为停时,且P(T\leq a)=1\} T={T:T为停时,且P(T<∞)=1},Ta={T:T为停时,且P(T≤a)=1}. 考虑随机过程 X = { X t , F t , t ≥ 0 } X=\{X_t,\mathcal{F}_t,t\geq 0\} X={Xt,Ft,t≥0}. 若 { X T , T ∈ T } \{X_T,T\in\mathscr{T}\} {XT,T∈T} 是一致可积的,称 X X X 是 class D 的;若对任意的 a > 0 a>0 a>0, { X T , T ∈ T a } \{X_T,T\in\mathscr{T}_a\} {XT,T∈Ta} 是一致可积的,称 X X X 是 class DL 的。
Doob-Meyer 分解
定理
若
(
Ω
,
F
,
(
F
t
)
t
≥
0
,
P
)
(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq 0},P)
(Ω,F,(Ft)t≥0,P) 上的右连续下鞅
X
X
X 是 class DL 的,其中域流
(
F
t
)
t
≥
0
(\mathcal{F}_t)_{t\geq0}
(Ft)t≥0 满足一般域流条件,则
X
X
X 存在唯一的分解(Doob-Meyer 分解)
X
=
M
+
A
X=M+A
X=M+A
其中
M
M
M 是鞅,
A
A
A 是自然增过程。
平方可积鞅分解
记
M
2
=
{
X
:
X
0
=
0
,
X
为平方可积鞅
}
M
2
c
=
{
X
∈
M
2
∣
X
连续
}
\mathcal{M}_2=\{X:X_0=0,X为平方可积鞅\}\\ \mathcal{M}_2^c=\{X\in\mathcal{M}_2|X连续\}
M2={X:X0=0,X为平方可积鞅}M2c={X∈M2∣X连续}
其中
M
2
\mathcal{M}_2
M2 作为线性空间,给定空间上的内积
(
X
,
Y
)
=
E
(
X
Y
)
(X,Y)=E(XY)
(X,Y)=E(XY),则
M
2
\mathcal{M}_2
M2 为 Hilbert 空间,可作正交分解
M
2
=
M
2
c
⊕
M
2
d
\mathcal{M}_2=\mathcal{M}_2^c\oplus\mathcal{M}_2^d
M2=M2c⊕M2d
即将平方可积鞅分解成连续和纯跳的部分。
⟨ X , Y ⟩ \langle X,Y\rangle ⟨X,Y⟩ 和 [ X , Y ] [X,Y] [X,Y]
基于 Doob-Meyer 分解,
X
∈
M
2
X\in\mathcal{M}_2
X∈M2,则
0
≤
X
2
0\leq X^2
0≤X2 且
X
2
X^2
X2 为右连续下鞅,故
X
2
X^2
X2 是 class DL,因此由 Doob-Meyer 分解,
X
2
=
M
+
A
X^2=M+A
X2=M+A
定义
⟨
X
⟩
:
=
A
\langle X\rangle:=A
⟨X⟩:=A 为
X
X
X 的二次变差。
定理
⟨ X , Y ⟩ \langle X,Y\rangle ⟨X,Y⟩ 具有以下性质: Z ∈ M 2 Z\in\mathcal{M}_2 Z∈M2
(1) ⟨ Y , X ⟩ = ⟨ X , Y ⟩ \langle Y,X\rangle=\langle X,Y\rangle ⟨Y,X⟩=⟨X,Y⟩
(2) ⟨ X , α Y + β Z ⟩ = α ⟨ X , Y ⟩ + β ⟨ X , Z ⟩ \langle X,\alpha Y+\beta Z\rangle=\alpha\langle X,Y\rangle+\beta\langle X,Z\rangle ⟨X,αY+βZ⟩=α⟨X,Y⟩+β⟨X,Z⟩
(3) ∣ ⟨ X , Y ⟩ ∣ 2 ≤ ⟨ X , Y ⟩ |\langle X,Y\rangle|^2\leq\langle X,Y\rangle ∣⟨X,Y⟩∣2≤⟨X,Y⟩
(4) ⟨ X , Y ⟩ t − ⟨ X , Y ⟩ s ≤ 1 2 [ ⟨ X ⟩ ] t − ⟨ X ⟩ s + ⟨ Y ⟩ t − ⟨ Y ⟩ s ] \langle X,Y\rangle_t-\langle X,Y\rangle_s\leq\dfrac{1}{2}\left[\langle X\rangle]_t-\langle X\rangle_s+\langle Y\rangle_t-\langle Y\rangle_s\right] ⟨X,Y⟩t−⟨X,Y⟩s≤21[⟨X⟩]t−⟨X⟩s+⟨Y⟩t−⟨Y⟩s]
(5) ∣ ⟨ X , Y ⟩ t − ⟨ X , Y ⟩ s ∣ ≤ ⟨ X ⟩ t − ⟨ X ⟩ s ⟨ Y ⟩ t − ⟨ Y ⟩ s |\langle X,Y\rangle_t-\langle X,Y\rangle_s|\leq\sqrt{\langle X\rangle_t-\langle X\rangle_s}\sqrt{\langle Y\rangle_t-\langle Y\rangle_s} ∣⟨X,Y⟩t−⟨X,Y⟩s∣≤⟨X⟩t−⟨X⟩s⟨Y⟩t−⟨Y⟩s
(6) ∣ ∫ ( 0 , ∞ ) f ( t ) g ( t ) d ⟨ X , Y ⟩ t ∣ ≤ a . s . ∫ ( 0 , ∞ ) f ( t ) d ⟨ X ⟩ t ∫ 0 , ∞ g ( t ) d ⟨ Y ⟩ t \left|\int_{(0,\infty)}f(t)g(t)d\langle X,Y\rangle_t\right|\mathop{\leq}\limits^{a.s.}\sqrt{\int_{(0,\infty)}f(t)d\langle X\rangle_t}\sqrt{\int_{0,\infty}g(t)d\langle Y\rangle_t} ∫(0,∞)f(t)g(t)d⟨X,Y⟩t ≤a.s.∫(0,∞)f(t)d⟨X⟩t∫0,∞g(t)d⟨Y⟩t,其中 f ∈ L 2 ( R + , d ⟨ X ⟩ ) , g ∈ L 2 ( R + , d ⟨ Y ⟩ ) f\in L^2(\mathbb{R}_+,d\langle X\rangle),g\in L^2(\mathbb{R}_+,d\langle Y\rangle) f∈L2(R+,d⟨X⟩),g∈L2(R+,d⟨Y⟩).
对于
X
∈
M
2
X\in\mathcal{M}_2
X∈M2,
X
2
−
⟨
X
⟩
∈
M
X^2-\langle X\rangle\in\mathcal{M}
X2−⟨X⟩∈M,取
[
0
,
t
]
[0,t]
[0,t] 的分划
π
:
0
=
t
0
<
t
1
<
⋯
<
t
n
=
t
\pi:0=t_0<t_1<\cdots<t_n=t
π:0=t0<t1<⋯<tn=t,记
∥
π
∥
=
max
1
≤
k
≤
n
Δ
t
k
,
Δ
X
t
k
=
X
t
k
−
X
t
k
−
1
\|\pi\|=\max_{1\leq k\leq n}\Delta t_k,\Delta X_{t_k}=X_{t_k}-X_{t_{k-1}}
∥π∥=max1≤k≤nΔtk,ΔXtk=Xtk−Xtk−1,则
[
X
,
Y
]
:
=
lim
∥
π
∥
→
0
∑
k
=
1
n
Δ
X
t
k
Δ
Y
t
k
=
lim
∥
π
∥
→
0
∑
k
=
1
n
Δ
X
t
k
c
Δ
Y
t
k
c
+
∑
k
=
1
n
Δ
X
t
k
d
Δ
Y
t
k
d
=
⟨
X
c
,
Y
c
⟩
(
t
)
+
∑
0
<
s
≤
t
Δ
X
s
Δ
Y
s
\begin{align*} [X,Y]:&=\lim_{\|\pi\|\to 0}\sum_{k=1}^n\Delta X_{t_k}\Delta Y_{t_k}=\lim_{\|\pi\|\to 0}\sum_{k=1}^n\Delta X_{t_k}^c\Delta Y_{t_k}^c+\sum_{k=1}^n\Delta X_{t_k}^d\Delta Y_{t_k}^d\\ &=\langle X^c,Y^c\rangle(t)+\sum_{0<s\leq t}\Delta X_s\Delta Y_s \end{align*}
[X,Y]:=∥π∥→0limk=1∑nΔXtkΔYtk=∥π∥→0limk=1∑nΔXtkcΔYtkc+k=1∑nΔXtkdΔYtkd=⟨Xc,Yc⟩(t)+0<s≤t∑ΔXsΔYs
而
[
X
]
≡
[
X
,
X
]
[X]\equiv [X,X]
[X]≡[X,X].
线性 SDE 的解法
理论解法
我们需要解如下的方程
X
t
=
H
t
+
∑
j
=
1
m
∫
0
t
A
s
−
(
j
)
X
s
−
d
Z
s
(
j
)
X_t=H_t+\sum_{j=1}^m\int_0^tA_{s-}^{(j)}X_{s-}dZ_s^{(j)}
Xt=Ht+j=1∑m∫0tAs−(j)Xs−dZs(j)
其中
H
t
=
(
H
t
(
1
)
,
⋯
,
H
t
(
n
)
)
T
为
n
维半鞅
X
:
[
0
,
∞
)
×
Ω
→
R
n
A
(
j
)
:
[
0
,
∞
)
×
Ω
→
R
n
×
R
n
Z
(
j
)
:
[
0
,
∞
)
×
Ω
→
R
为连续半鞅
H_t=(H_t^{(1)},\cdots, H_t^{(n)})^T 为 n维半鞅\\ X:[0,\infty)\times\Omega\to\mathbb{R}^n\\ A^{(j)}:[0,\infty)\times\Omega\to\mathbb{R}^n\times\mathbb{R}^n\\ Z^{(j)}:[0,\infty)\times\Omega\to\mathbb{R}为连续半鞅
Ht=(Ht(1),⋯,Ht(n))T为n维半鞅X:[0,∞)×Ω→RnA(j):[0,∞)×Ω→Rn×RnZ(j):[0,∞)×Ω→R为连续半鞅
第一步:转为齐次方程
考虑
U
t
=
1
n
+
∑
j
=
1
m
∫
0
t
A
s
−
(
j
)
U
s
−
d
Z
s
(
j
)
U_t=\mathbf{1}_n+\sum_{j=1}^m\int_0^tA_{s-}^{(j)}U_{s-}dZ_s^{(j)}
Ut=1n+j=1∑m∫0tAs−(j)Us−dZs(j)
这是下面齐次方程的解
{
d
U
t
=
∑
j
=
1
m
A
t
−
(
j
)
U
t
d
Z
t
(
j
)
U
0
=
1
n
\begin{cases} dU_t=\sum_{j=1}^mA_{t-}^{(j)}U_tdZ_t^{(j)}\\ U_0=\mathbf{1}_n \end{cases}
{dUt=∑j=1mAt−(j)UtdZt(j)U0=1n
猜测原方程的解
X
t
X_t
Xt 有形式
X
t
=
U
t
Y
t
X_t=U_tY_t
Xt=UtYt,代入后得到
d
X
t
=
d
(
U
t
Y
t
)
=
(
d
U
t
)
Y
t
−
+
U
t
−
(
d
Y
t
)
+
d
[
U
,
Y
]
(
t
)
(1)
dX_t=d(U_tY_t)=(dU_t)Y_{t-}+U_{t-}(dY_t)+d[U,Y](t)\tag{1}
dXt=d(UtYt)=(dUt)Yt−+Ut−(dYt)+d[U,Y](t)(1)
对比原方程中式子
d
X
t
=
d
H
t
+
∑
j
=
1
m
A
t
−
(
j
)
X
t
−
d
Z
t
(
j
)
(2)
dX_t=dH_t+\sum_{j=1}^mA_{t-}^{(j)}X_{t-}dZ_t^{(j)}\tag{2}
dXt=dHt+j=1∑mAt−(j)Xt−dZt(j)(2)
由于
(
d
U
t
)
Y
t
−
=
∑
j
=
1
m
A
t
−
(
j
)
U
t
−
Y
t
−
d
Z
t
(
j
)
=
∑
j
=
1
m
A
t
−
(
j
)
X
t
−
d
Z
t
(
j
)
(dU_t)Y_{t-}=\sum_{j=1}^mA_{t-}^{(j)}U_{t-}Y_{t-}dZ_t^{(j)}=\sum_{j=1}^mA_{t-}^{(j)}X_{t-}dZ_t^{(j)}
(dUt)Yt−=j=1∑mAt−(j)Ut−Yt−dZt(j)=j=1∑mAt−(j)Xt−dZt(j)
为使(1)(2)式一致,只需
d
H
t
=
U
t
−
(
d
Y
t
)
+
d
[
U
,
Y
]
(
t
)
dH_t=U_{t-}(dY_t)+d[U,Y](t)
dHt=Ut−(dYt)+d[U,Y](t)
假设存在满足条件的
Y
t
Y_t
Yt,则
d
Y
t
=
U
t
−
−
1
d
H
t
−
U
t
−
−
1
d
[
U
,
Y
]
(
t
)
dY_t=U_{t-}^{-1}dH_t-U_{t-}^{-1}d[U,Y](t)
dYt=Ut−−1dHt−Ut−−1d[U,Y](t),其中
d
[
U
,
Y
]
(
t
)
=
∑
j
=
1
m
A
t
−
(
j
)
U
t
d
[
Z
(
j
)
,
Y
]
(
t
)
d[U,Y](t)=\sum_{j=1}^mA_{t-}^{(j)}U_td[Z^{(j)},Y](t)
d[U,Y](t)=j=1∑mAt−(j)Utd[Z(j),Y](t)
又
d
[
Z
(
j
)
,
Y
]
(
t
)
=
U
t
−
−
1
d
[
H
,
Z
(
j
)
]
(
t
)
−
U
t
−
−
1
d
[
Z
(
j
)
,
[
U
,
Y
]
]
(
t
)
=
U
t
−
−
1
d
[
H
,
Z
(
j
)
]
(
t
)
d[Z^{(j)},Y](t)=U_{t-}^{-1}d[H,Z^{(j)}](t)-U_{t-}^{-1}d[Z^{(j)},[U,Y]](t)=U_{t-}^{-1}d[H,Z^{(j)}](t)
d[Z(j),Y](t)=Ut−−1d[H,Z(j)](t)−Ut−−1d[Z(j),[U,Y]](t)=Ut−−1d[H,Z(j)](t)
代回得到
d
[
U
,
Y
]
(
t
)
=
∑
j
=
1
m
A
t
−
j
d
[
H
,
Z
(
j
)
]
(
t
)
⟹
d
Y
t
=
U
t
−
−
1
d
H
t
−
U
t
−
−
1
∑
j
=
1
m
A
t
−
j
d
[
H
,
Z
(
j
)
]
(
t
)
⟹
X
t
=
U
t
[
X
0
+
∫
0
t
U
s
−
1
[
d
H
s
+
A
s
−
(
j
)
d
⟨
H
,
Z
(
j
)
⟩
]
d
s
]
d[U,Y](t)=\sum_{j=1}^mA_{t-}^{j}d[H,Z^{(j)}](t)\\ \Longrightarrow dY_t=U_{t-}^{-1}dH_t-U_{t-}^{-1}\sum_{j=1}^mA_{t-}^jd[H,Z^{(j)}](t)\\ \Longrightarrow X_t=U_t[X_0+\int_0^tU_s^{-1}[dH_s+A_{s-}^{(j)}d\langle H,Z^{(j)}\rangle]ds]
d[U,Y](t)=j=1∑mAt−jd[H,Z(j)](t)⟹dYt=Ut−−1dHt−Ut−−1j=1∑mAt−jd[H,Z(j)](t)⟹Xt=Ut[X0+∫0tUs−1[dHs+As−(j)d⟨H,Z(j)⟩]ds]
具体例子
事实上,在具体的例子中,会简单很多,我们通常在假设了 X t X_t Xt 的形式后,代入就可以解出 Y t Y_t Yt,并不需要太复杂的推导。
【例1】 d X t = 1 2 X t d t + X t d W t dX_t=\dfrac{1}{2}X_tdt+X_tdW_t dXt=21Xtdt+XtdWt
将其变形为
d
X
t
=
X
t
(
1
2
d
t
+
d
W
t
)
=
X
t
d
M
t
dX_t=X_t(\dfrac{1}{2}dt+dW_t)=X_tdM_t
dXt=Xt(21dt+dWt)=XtdMt,因此这事实上本身就是齐次的方程(没有
H
t
H_t
Ht),直接积分得到
X
t
=
X
0
exp
(
M
t
−
1
2
⟨
M
⟩
(
t
)
)
=
X
0
exp
(
W
t
)
X_t=X_0\exp(M_t-\dfrac{1}{2}\langle M\rangle(t))=X_0\exp(W_t)
Xt=X0exp(Mt−21⟨M⟩(t))=X0exp(Wt)
【例2】
d
X
t
=
−
X
t
d
t
+
2
d
B
t
dX_t=-X_tdt+\sqrt{2}dB_t
dXt=−Xtdt+2dBt
考虑齐次方程
d
U
t
=
−
U
t
d
t
,
U
0
=
1
⟹
U
t
=
e
−
t
dU_t=-U_tdt,\quad U_0=1\\ \Longrightarrow U_t=e^{-t}
dUt=−Utdt,U0=1⟹Ut=e−t
令
X
t
=
U
t
Y
t
=
e
−
t
Y
t
X_t=U_tY_t=e^{-t}Y_t
Xt=UtYt=e−tYt,即
Y
t
=
e
t
U
t
Y_t=e^tU_t
Yt=etUt,利用
I
t
o
ˊ
It\acute{o}
Itoˊ 积分公式有
d
Y
t
=
d
(
e
t
X
t
)
=
e
t
X
t
d
t
+
e
t
d
X
t
=
2
e
t
d
B
t
⟹
Y
t
=
X
0
+
∫
0
t
2
e
t
d
B
t
dY_t=d(e^tX_t)=e^tX_tdt+e^tdX_t=\sqrt{2}e^tdB_t\\ \Longrightarrow Y_t=X_0+\int_0^t\sqrt{2}e^tdB_t
dYt=d(etXt)=etXtdt+etdXt=2etdBt⟹Yt=X0+∫0t2etdBt
其中
∫
0
t
2
e
t
d
B
t
∼
N
(
0
,
∫
0
t
2
e
2
t
d
t
)
\int_0^t\sqrt{2}e^tdB_t\sim\mathcal{N}(0,\int_0^t2e^{2t}dt)
∫0t2etdBt∼N(0,∫0t2e2tdt). 代回表达式
X
t
=
e
−
t
X
0
+
e
−
t
∫
0
t
2
e
s
d
B
s
X_t=e^{-t}X_0+e^{-t}\int_0^t\sqrt{2}e^sdB_s
Xt=e−tX0+e−t∫0t2esdBs