随机分析基础知识:线性 SDE 的解法

线性SDE的解法

基础知识

Class D, Class DL

T = { T : T 为停时,且 P ( T < ∞ ) = 1 } , T a = { T : T 为停时,且 P ( T ≤ a ) = 1 } \mathscr{T}=\{T:T为停时,且P(T<\infty)=1\},\mathscr{T}_a=\{T:T为停时,且P(T\leq a)=1\} T={T:T为停时,且P(T<)=1},Ta={T:T为停时,且P(Ta)=1}. 考虑随机过程 X = { X t , F t , t ≥ 0 } X=\{X_t,\mathcal{F}_t,t\geq 0\} X={Xt,Ft,t0}. 若 { X T , T ∈ T } \{X_T,T\in\mathscr{T}\} {XT,TT} 是一致可积的,称 X X X 是 class D 的;若对任意的 a > 0 a>0 a>0 { X T , T ∈ T a } \{X_T,T\in\mathscr{T}_a\} {XT,TTa} 是一致可积的,称 X X X 是 class DL 的。

Doob-Meyer 分解

定理

( Ω , F , ( F t ) t ≥ 0 , P ) (\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq 0},P) (Ω,F,(Ft)t0,P) 上的右连续下鞅 X X X 是 class DL 的,其中域流 ( F t ) t ≥ 0 (\mathcal{F}_t)_{t\geq0} (Ft)t0 满足一般域流条件,则 X X X 存在唯一的分解(Doob-Meyer 分解)
X = M + A X=M+A X=M+A
其中 M M M 是鞅, A A A 是自然增过程。

平方可积鞅分解


M 2 = { X : X 0 = 0 , X 为平方可积鞅 } M 2 c = { X ∈ M 2 ∣ X 连续 } \mathcal{M}_2=\{X:X_0=0,X为平方可积鞅\}\\ \mathcal{M}_2^c=\{X\in\mathcal{M}_2|X连续\} M2={X:X0=0,X为平方可积鞅}M2c={XM2X连续}
其中 M 2 \mathcal{M}_2 M2 作为线性空间,给定空间上的内积 ( X , Y ) = E ( X Y ) (X,Y)=E(XY) (X,Y)=E(XY),则 M 2 \mathcal{M}_2 M2 为 Hilbert 空间,可作正交分解
M 2 = M 2 c ⊕ M 2 d \mathcal{M}_2=\mathcal{M}_2^c\oplus\mathcal{M}_2^d M2=M2cM2d
即将平方可积鞅分解成连续和纯跳的部分。

⟨ X , Y ⟩ \langle X,Y\rangle X,Y [ X , Y ] [X,Y] [X,Y]

基于 Doob-Meyer 分解, X ∈ M 2 X\in\mathcal{M}_2 XM2,则 0 ≤ X 2 0\leq X^2 0X2 X 2 X^2 X2 为右连续下鞅,故 X 2 X^2 X2 是 class DL,因此由 Doob-Meyer 分解,
X 2 = M + A X^2=M+A X2=M+A
定义 ⟨ X ⟩ : = A \langle X\rangle:=A X:=A X X X 的二次变差。

定理

⟨ X , Y ⟩ \langle X,Y\rangle X,Y 具有以下性质: Z ∈ M 2 Z\in\mathcal{M}_2 ZM2

(1) ⟨ Y , X ⟩ = ⟨ X , Y ⟩ \langle Y,X\rangle=\langle X,Y\rangle Y,X=X,Y

(2) ⟨ X , α Y + β Z ⟩ = α ⟨ X , Y ⟩ + β ⟨ X , Z ⟩ \langle X,\alpha Y+\beta Z\rangle=\alpha\langle X,Y\rangle+\beta\langle X,Z\rangle X,αY+βZ=αX,Y+βX,Z

(3) ∣ ⟨ X , Y ⟩ ∣ 2 ≤ ⟨ X , Y ⟩ |\langle X,Y\rangle|^2\leq\langle X,Y\rangle X,Y2X,Y

(4) ⟨ X , Y ⟩ t − ⟨ X , Y ⟩ s ≤ 1 2 [ ⟨ X ⟩ ] t − ⟨ X ⟩ s + ⟨ Y ⟩ t − ⟨ Y ⟩ s ] \langle X,Y\rangle_t-\langle X,Y\rangle_s\leq\dfrac{1}{2}\left[\langle X\rangle]_t-\langle X\rangle_s+\langle Y\rangle_t-\langle Y\rangle_s\right] X,YtX,Ys21[X]tXs+YtYs]

(5) ∣ ⟨ X , Y ⟩ t − ⟨ X , Y ⟩ s ∣ ≤ ⟨ X ⟩ t − ⟨ X ⟩ s ⟨ Y ⟩ t − ⟨ Y ⟩ s |\langle X,Y\rangle_t-\langle X,Y\rangle_s|\leq\sqrt{\langle X\rangle_t-\langle X\rangle_s}\sqrt{\langle Y\rangle_t-\langle Y\rangle_s} X,YtX,YsXtXs YtYs

(6) ∣ ∫ ( 0 , ∞ ) f ( t ) g ( t ) d ⟨ X , Y ⟩ t ∣ ≤ a . s . ∫ ( 0 , ∞ ) f ( t ) d ⟨ X ⟩ t ∫ 0 , ∞ g ( t ) d ⟨ Y ⟩ t \left|\int_{(0,\infty)}f(t)g(t)d\langle X,Y\rangle_t\right|\mathop{\leq}\limits^{a.s.}\sqrt{\int_{(0,\infty)}f(t)d\langle X\rangle_t}\sqrt{\int_{0,\infty}g(t)d\langle Y\rangle_t} (0,)f(t)g(t)dX,Yt a.s.(0,)f(t)dXt 0,g(t)dYt ,其中 f ∈ L 2 ( R + , d ⟨ X ⟩ ) , g ∈ L 2 ( R + , d ⟨ Y ⟩ ) f\in L^2(\mathbb{R}_+,d\langle X\rangle),g\in L^2(\mathbb{R}_+,d\langle Y\rangle) fL2(R+,dX⟩),gL2(R+,dY⟩).

对于 X ∈ M 2 X\in\mathcal{M}_2 XM2 X 2 − ⟨ X ⟩ ∈ M X^2-\langle X\rangle\in\mathcal{M} X2XM,取 [ 0 , t ] [0,t] [0,t] 的分划 π : 0 = t 0 < t 1 < ⋯ < t n = t \pi:0=t_0<t_1<\cdots<t_n=t π:0=t0<t1<<tn=t,记 ∥ π ∥ = max ⁡ 1 ≤ k ≤ n Δ t k , Δ X t k = X t k − X t k − 1 \|\pi\|=\max_{1\leq k\leq n}\Delta t_k,\Delta X_{t_k}=X_{t_k}-X_{t_{k-1}} π=max1knΔtk,ΔXtk=XtkXtk1,则
[ X , Y ] : = lim ⁡ ∥ π ∥ → 0 ∑ k = 1 n Δ X t k Δ Y t k = lim ⁡ ∥ π ∥ → 0 ∑ k = 1 n Δ X t k c Δ Y t k c + ∑ k = 1 n Δ X t k d Δ Y t k d = ⟨ X c , Y c ⟩ ( t ) + ∑ 0 < s ≤ t Δ X s Δ Y s \begin{align*} [X,Y]:&=\lim_{\|\pi\|\to 0}\sum_{k=1}^n\Delta X_{t_k}\Delta Y_{t_k}=\lim_{\|\pi\|\to 0}\sum_{k=1}^n\Delta X_{t_k}^c\Delta Y_{t_k}^c+\sum_{k=1}^n\Delta X_{t_k}^d\Delta Y_{t_k}^d\\ &=\langle X^c,Y^c\rangle(t)+\sum_{0<s\leq t}\Delta X_s\Delta Y_s \end{align*} [X,Y]:=π0limk=1nΔXtkΔYtk=π0limk=1nΔXtkcΔYtkc+k=1nΔXtkdΔYtkd=Xc,Yc(t)+0<stΔXsΔYs
[ X ] ≡ [ X , X ] [X]\equiv [X,X] [X][X,X].


线性 SDE 的解法

理论解法

我们需要解如下的方程
X t = H t + ∑ j = 1 m ∫ 0 t A s − ( j ) X s − d Z s ( j ) X_t=H_t+\sum_{j=1}^m\int_0^tA_{s-}^{(j)}X_{s-}dZ_s^{(j)} Xt=Ht+j=1m0tAs(j)XsdZs(j)
其中
H t = ( H t ( 1 ) , ⋯   , H t ( n ) ) T 为 n 维半鞅 X : [ 0 , ∞ ) × Ω → R n A ( j ) : [ 0 , ∞ ) × Ω → R n × R n Z ( j ) : [ 0 , ∞ ) × Ω → R 为连续半鞅 H_t=(H_t^{(1)},\cdots, H_t^{(n)})^T 为 n维半鞅\\ X:[0,\infty)\times\Omega\to\mathbb{R}^n\\ A^{(j)}:[0,\infty)\times\Omega\to\mathbb{R}^n\times\mathbb{R}^n\\ Z^{(j)}:[0,\infty)\times\Omega\to\mathbb{R}为连续半鞅 Ht=(Ht(1),,Ht(n))Tn维半鞅X:[0,)×ΩRnA(j):[0,)×ΩRn×RnZ(j):[0,)×ΩR为连续半鞅
第一步:转为齐次方程

考虑
U t = 1 n + ∑ j = 1 m ∫ 0 t A s − ( j ) U s − d Z s ( j ) U_t=\mathbf{1}_n+\sum_{j=1}^m\int_0^tA_{s-}^{(j)}U_{s-}dZ_s^{(j)} Ut=1n+j=1m0tAs(j)UsdZs(j)
这是下面齐次方程的解
{ d U t = ∑ j = 1 m A t − ( j ) U t d Z t ( j ) U 0 = 1 n \begin{cases} dU_t=\sum_{j=1}^mA_{t-}^{(j)}U_tdZ_t^{(j)}\\ U_0=\mathbf{1}_n \end{cases} {dUt=j=1mAt(j)UtdZt(j)U0=1n
猜测原方程的解 X t X_t Xt 有形式 X t = U t Y t X_t=U_tY_t Xt=UtYt,代入后得到
d X t = d ( U t Y t ) = ( d U t ) Y t − + U t − ( d Y t ) + d [ U , Y ] ( t ) (1) dX_t=d(U_tY_t)=(dU_t)Y_{t-}+U_{t-}(dY_t)+d[U,Y](t)\tag{1} dXt=d(UtYt)=(dUt)Yt+Ut(dYt)+d[U,Y](t)(1)
对比原方程中式子
d X t = d H t + ∑ j = 1 m A t − ( j ) X t − d Z t ( j ) (2) dX_t=dH_t+\sum_{j=1}^mA_{t-}^{(j)}X_{t-}dZ_t^{(j)}\tag{2} dXt=dHt+j=1mAt(j)XtdZt(j)(2)
由于
( d U t ) Y t − = ∑ j = 1 m A t − ( j ) U t − Y t − d Z t ( j ) = ∑ j = 1 m A t − ( j ) X t − d Z t ( j ) (dU_t)Y_{t-}=\sum_{j=1}^mA_{t-}^{(j)}U_{t-}Y_{t-}dZ_t^{(j)}=\sum_{j=1}^mA_{t-}^{(j)}X_{t-}dZ_t^{(j)} (dUt)Yt=j=1mAt(j)UtYtdZt(j)=j=1mAt(j)XtdZt(j)
为使(1)(2)式一致,只需
d H t = U t − ( d Y t ) + d [ U , Y ] ( t ) dH_t=U_{t-}(dY_t)+d[U,Y](t) dHt=Ut(dYt)+d[U,Y](t)
假设存在满足条件的 Y t Y_t Yt,则 d Y t = U t − − 1 d H t − U t − − 1 d [ U , Y ] ( t ) dY_t=U_{t-}^{-1}dH_t-U_{t-}^{-1}d[U,Y](t) dYt=Ut1dHtUt1d[U,Y](t),其中
d [ U , Y ] ( t ) = ∑ j = 1 m A t − ( j ) U t d [ Z ( j ) , Y ] ( t ) d[U,Y](t)=\sum_{j=1}^mA_{t-}^{(j)}U_td[Z^{(j)},Y](t) d[U,Y](t)=j=1mAt(j)Utd[Z(j),Y](t)

d [ Z ( j ) , Y ] ( t ) = U t − − 1 d [ H , Z ( j ) ] ( t ) − U t − − 1 d [ Z ( j ) , [ U , Y ] ] ( t ) = U t − − 1 d [ H , Z ( j ) ] ( t ) d[Z^{(j)},Y](t)=U_{t-}^{-1}d[H,Z^{(j)}](t)-U_{t-}^{-1}d[Z^{(j)},[U,Y]](t)=U_{t-}^{-1}d[H,Z^{(j)}](t) d[Z(j),Y](t)=Ut1d[H,Z(j)](t)Ut1d[Z(j),[U,Y]](t)=Ut1d[H,Z(j)](t)
代回得到
d [ U , Y ] ( t ) = ∑ j = 1 m A t − j d [ H , Z ( j ) ] ( t ) ⟹ d Y t = U t − − 1 d H t − U t − − 1 ∑ j = 1 m A t − j d [ H , Z ( j ) ] ( t ) ⟹ X t = U t [ X 0 + ∫ 0 t U s − 1 [ d H s + A s − ( j ) d ⟨ H , Z ( j ) ⟩ ] d s ] d[U,Y](t)=\sum_{j=1}^mA_{t-}^{j}d[H,Z^{(j)}](t)\\ \Longrightarrow dY_t=U_{t-}^{-1}dH_t-U_{t-}^{-1}\sum_{j=1}^mA_{t-}^jd[H,Z^{(j)}](t)\\ \Longrightarrow X_t=U_t[X_0+\int_0^tU_s^{-1}[dH_s+A_{s-}^{(j)}d\langle H,Z^{(j)}\rangle]ds] d[U,Y](t)=j=1mAtjd[H,Z(j)](t)dYt=Ut1dHtUt1j=1mAtjd[H,Z(j)](t)Xt=Ut[X0+0tUs1[dHs+As(j)dH,Z(j)⟩]ds]


具体例子

事实上,在具体的例子中,会简单很多,我们通常在假设了 X t X_t Xt 的形式后,代入就可以解出 Y t Y_t Yt,并不需要太复杂的推导。

【例1】 d X t = 1 2 X t d t + X t d W t dX_t=\dfrac{1}{2}X_tdt+X_tdW_t dXt=21Xtdt+XtdWt

将其变形为 d X t = X t ( 1 2 d t + d W t ) = X t d M t dX_t=X_t(\dfrac{1}{2}dt+dW_t)=X_tdM_t dXt=Xt(21dt+dWt)=XtdMt,因此这事实上本身就是齐次的方程(没有 H t H_t Ht),直接积分得到
X t = X 0 exp ⁡ ( M t − 1 2 ⟨ M ⟩ ( t ) ) = X 0 exp ⁡ ( W t ) X_t=X_0\exp(M_t-\dfrac{1}{2}\langle M\rangle(t))=X_0\exp(W_t) Xt=X0exp(Mt21M(t))=X0exp(Wt)
【例2】 d X t = − X t d t + 2 d B t dX_t=-X_tdt+\sqrt{2}dB_t dXt=Xtdt+2 dBt

考虑齐次方程
d U t = − U t d t , U 0 = 1 ⟹ U t = e − t dU_t=-U_tdt,\quad U_0=1\\ \Longrightarrow U_t=e^{-t} dUt=Utdt,U0=1Ut=et
X t = U t Y t = e − t Y t X_t=U_tY_t=e^{-t}Y_t Xt=UtYt=etYt,即 Y t = e t U t Y_t=e^tU_t Yt=etUt,利用 I t o ˊ It\acute{o} Itoˊ 积分公式有
d Y t = d ( e t X t ) = e t X t d t + e t d X t = 2 e t d B t ⟹ Y t = X 0 + ∫ 0 t 2 e t d B t dY_t=d(e^tX_t)=e^tX_tdt+e^tdX_t=\sqrt{2}e^tdB_t\\ \Longrightarrow Y_t=X_0+\int_0^t\sqrt{2}e^tdB_t dYt=d(etXt)=etXtdt+etdXt=2 etdBtYt=X0+0t2 etdBt
其中 ∫ 0 t 2 e t d B t ∼ N ( 0 , ∫ 0 t 2 e 2 t d t ) \int_0^t\sqrt{2}e^tdB_t\sim\mathcal{N}(0,\int_0^t2e^{2t}dt) 0t2 etdBtN(0,0t2e2tdt). 代回表达式
X t = e − t X 0 + e − t ∫ 0 t 2 e s d B s X_t=e^{-t}X_0+e^{-t}\int_0^t\sqrt{2}e^sdB_s Xt=etX0+et0t2 esdBs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值