An Attention Free Transformer

在这里插入图片描述

An Attention Free Transformer

Abstract

引入了无注意变压器(AFT),这是transformer的一种有效变体,它消除了点积自我关注的需要。在AFT层中,key和value首先与一组学习的位置偏差组合,其结果以元素方式与查询相乘这种新的操作具有线性的存储器复杂性。上下文大小和特征尺寸,使其与大输入和模型大小兼容。本文还介绍了AFT-LOCAL和AFT-COV这两种模型变体,它们在保持全局连通性的同时利用了局部性和空间权重分担的思想。在两个自回归建模任务(CIFAR10和Enwik8)以及一个图像识别任务(ImageNet-1K分类)上进行了广泛的实验。

Methodology

给定输入x,首相将其进行线性变换为:
在这里插入图片描述
然后执行以下操作:
在这里插入图片描述
换言之,对于每个目标位置t,AFT执行值的加权平均,其结果与按元素相乘的查询相结合。具体地说,加权简单地由keys和一组学习的成对位置偏差组成。这提供了一个直接的优势,即不需要计算和存储昂贵的关注矩阵,同时像MHA那样维护query和value之间的全局交互。
为了进一步了解AFT与MHA的关系,我们可以将公式2重写为:
在这里插入图片描述

启示

  • 这篇论文的核心仍然是解决transformer的self-attention的2次方的复杂度问题,这种复杂度与输入序列呈线性的注意力非常有必要,可以参照这一篇论文
### Flash Attention in Transformer Architecture Transformers have become a cornerstone in deep learning models due to their effectiveness in handling sequential data without relying on recurrent neural networks or convolutional layers. The core component enabling this is the **multi-head self-attention mechanism**, which allows each position in the sequence to attend to all positions in the previous layer[^1]. However, as sequences grow longer, computational costs increase quadratically with respect to sequence length. #### Introduction to Flash Attention Flash Attention addresses these limitations by optimizing both memory usage and speed while maintaining model accuracy. This technique reduces the complexity from O(n²) to approximately O(n log n), making it feasible to process much longer sequences efficiently. In addition, Flash Attention introduces several optimizations that enhance performance: - **Efficient Memory Access**: By reorganizing how attention scores are computed and stored. - **Blockwise Computation**: Processing smaller chunks of input at once rather than computing over entire matrices simultaneously. - **Gradient Checkpointing**: Reducing memory footprint during backpropagation through selective recomputation of intermediate activations. #### Implementation Details To implement Flash Attention within PyTorch—a flexible framework known for its ease-of-use—developers can leverage specialized libraries like `flash-attn`. Below demonstrates integrating Flash Attention into an existing transformer-based network using Python code snippets tailored specifically towards enhancing efficiency when dealing with large-scale datasets. ```python import torch from flash_attn import FlashAttention class EfficientTransformerLayer(torch.nn.Module): def __init__(self, embed_dim, num_heads=8): super().__init__() self.flash_attention = FlashAttention(causal=False) def forward(self, qkv_input): # Shape (batch_size, seq_len, 3*embed_dim) batch_size, seq_length, _ = qkv_input.shape # Reshape QKV tensor for compatibility with flash attention module qkv_reshaped = qkv_input.view(batch_size, seq_length, 3, -1).transpose(1, 2).contiguous() output = self.flash_attention(qkv_reshaped)[0] return output.transpose(1, 2).reshape_as(qkv_input[:, :, :output.size(-1)]) ``` This implementation leverages efficient matrix operations provided by optimized kernels designed explicitly for modern hardware architectures such as GPUs. It also ensures backward compatibility with standard implementations found in popular frameworks like Hugging Face Transformers library. #### Advantages Over Traditional Self-Attention Mechanisms The primary benefits offered by incorporating Flash Attention include but are not limited to: - **Reduced Computational Cost**: Significant reduction in floating-point operations required per token pair comparison. - **Enhanced Scalability**: Ability to handle significantly larger contexts compared to traditional methods. - **Improved Training Stability**: Through better management of numerical precision issues encountered during long-range dependency modeling tasks. --related questions-- 1. How does blockwise computation contribute to reducing memory consumption? 2. Can you explain gradient checkpointing's role in improving training efficiency? 3. What specific improvements has Flash Attention brought about concerning very long text processing applications? 4. Are there any trade-offs associated with adopting Flash Attention instead of conventional approaches?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值